

SMART Printer SDK 2

User’s Guide

2018, 04
IDP Corp., Ltd.

Table of Contents

1 Introduction ...1
2 Getting Started ..5

2.1 Construction of SMART Printer SDK ... 5
2.1.1 SMART Printer Documents ... 5
2.1.2 SMART Printer Libraries .. 5
2.1.3 SMART Printer Header Files ... 5
2.1.4 SMART Printer Reference Class ... 5
2.1.5 SMART Printer Sample Code .. 5
2.1.6 SMART Printer Drivers .. 6
2.1.7 SMART Firmwares .. 6
2.1.8 SMART Utilities ... 7

2.2 Usage of Driver Mode ... 7
2.3 Usage of DCL Mode ... 9

3 Function Reference...27
3.1 Return Values ... 27
3.2 SmartComm_GetDeviceList ... 28
3.3 SmartComm_GetDeviceList2.. 29
3.4 SmartComm_GetDeviceInfo ... 31
3.5 SmartComm_GetDeviceInfo2 ... 32
3.6 SmartComm_OpenDevice .. 33
3.7 SmartComm_OpenDevice2 .. 34
3.8 SmartDCL_OpenDevice ... 35
3.9 SmartDCL_OpenDevice2 ... 36
3.10 SmartDCL_OpenDevice3 ... 37
3.11 SmartComm_CloseDevice.. 39
3.12 SmartDCL_CloseDevice ... 39
3.13 SmartComm_GetStatus .. 40
3.14 SmartComm_GetRibbonType ... 44
3.15 SmartComm_GetRibbonRemain .. 45
3.16 SmartComm_GetRibbonInfo ... 45
3.17 SmartComm_ClearStatus ... 46
3.18 SmartComm_Reboot .. 47
3.19 SmartComm_SetLCDText... 48
3.20 SmartComm_Beep ... 49
3.21 SmartComm_SBSStart ... 49
3.22 SmartComm_SBSEnd .. 50

3.23 SmartComm_CardIn ... 51
3.24 SmartComm_CardOut .. 51
3.25 SmartComm_CardOutBack .. 52
3.26 SmartComm_CardOutBackAngle ... 53
3.27 SmartComm_Move... 53
3.28 SmartComm_MoveFromIn.. 54
3.29 SmartComm_MoveFromOut ... 55
3.30 SmartComm_MoveFromRotateIn ... 55
3.31 SmartComm_MoveSensor.. 56
3.32 SmartComm_MovingScan .. 58
3.33 SmartCommEx_GetPanelDensity ... 59
3.34 SmartCommEx_SetPanelDensity ... 59
3.35 SmartComm_ICHContact ... 60
3.36 SmartComm_ICHDiscontact ... 61
3.37 SmartComm_Rotate ... 62
3.38 SmartComm_MagReadAction .. 62
3.39 SmartComm_MagReadAction2 .. 63
3.40 SmartComm_MagGetBuffer ... 64
3.41 SmartComm_MagGetAllBuffer .. 65
3.42 SmartComm_MagConfig .. 67
3.43 SmartComm_MagWriteAction ... 69
3.44 SmartComm_MagWriteAction2 ... 70
3.45 SmartComm_MagBitModeGetBPI .. 71
3.46 SmartComm_MagBitModeGetMaxSize ... 72
3.47 SmartComm_MagSetBuffer .. 72
3.48 SmartComm_MagSetAllBuffer .. 73
3.49 SmartComm_MagGetCryptoBuffer ... 75
3.50 SmartComm_MagGetAllCryptoBuffer ... 76
3.51 SmartComm_MagSetCryptoBuffer .. 78
3.52 SmartComm_MagSetAllCryptoBuffer .. 79
3.53 SmartComm_OpenDocument ... 80
3.54 SmartComm_CloseDocument .. 81
3.55 SmartComm_GetFieldCount ... 82
3.56 SmartComm_GetFieldName ... 82
3.57 SmartComm_GetFieldValue ... 83
3.58 SmartComm_SetFieldValue .. 84
3.59 SmartComm_GetPrinterSettings ... 85
3.60 SmartComm_GetPrinterSettings2 ... 86
3.61 SmartComm_SetPrinterSettings ... 87
3.62 SmartComm_SetPrinterSettings2 ... 87

3.63 SmartComm_DrawImage ... 88
3.64 SmartComm_DrawBitmap .. 90
3.65 SmartCommEx_DrawImage ... 91
3.66 SmartCommEx_DrawBitmap .. 94
3.67 SmartComm_DrawText... 96
3.68 SmartComm_DrawText2 ... 97
3.69 SmartComm_DrawRect, 31 .. 100
3.70 SmartComm_DrawBarcode .. 101
3.71 SmartComm_GetBarcodeTypeCount .. 103
3.72 SmartComm_GetBarcodeTypeName .. 104
3.73 SmartDCL_GetSurface ... 105
3.74 SmartDCL_GetSurface2 ... 106
3.75 SmartComm_Print .. 107
3.76 SmartDCL_Print ... 108
3.77 SmartComm_DoPrint ... 109
3.78 SmartComm_GetPreviewBitmap .. 109
3.79 SmartComm_GetUnitInfo ... 110
3.80 SmartComm_GetFieldLinkedUnitInfo .. 113
3.81 SmartComm_SetUnitInfo .. 114
3.82 SmartComm_SetICG .. 115
3.83 SmartComm_GetICG ... 115
3.84 SmartComm_IsBackEnable .. 116
3.85 SmartCommEx_SerialCmdSend ... 117
3.86 SmartCommEx_SerialCmdRecv ... 118
3.87 SmartComm_RFPowerOn .. 119
3.88 SmartComm_RFPowerOff .. 120
3.89 SmartComm_RFInput ... 120
3.90 SmartComm_RFOutput .. 121
3.91 SmartComm_RFTransmit ... 122
3.92 SmartCommEx_RFPCSC_GetReaderName. .. 124
3.93 SmartComm_ICPowerOn ... 124
3.94 SmartComm_ICPowerOff ... 125
3.95 SmartComm_ICInput .. 126
3.96 SmartComm_ICOutput ... 127
3.97 SmartComm_ICTransmit .. 128
3.98 SmartCommEx_IC_GetICReaderInfo ... 129
3.99 SmartCommEx_IC_ GetSIMReaderInfo .. 130
3.100 SmartCommEx_SetPassword... 131
3.101 SmartCommEx_SetUserPassword ... 132
3.102 SmartCommEx_UnlockPrinter2 .. 133

3.103 SmartCommEx_LockPrinter2.. 134
3.104 SmartLami_GetStatus... 135
3.105 SmartFlip_GetStatus .. 138
3.106 SmartLami_GetVersion... 140
3.107 SmartCommEx_GetConfig ... 141
3.108 SmartCommEx_SetConfig .. 142
3.109 SmartKiosk_Hopper ... 143
3.110 SmartKiosk_CardIn2 .. 144

4 Migration from SDK 1 to SDK 2 .. 146
4.1 Integration of DLL files .. 146
4.2 Calling printer list .. 146
4.3 To distinguish between local and network ... 147
4.4 Connecting to the printer .. 148
4.5 Sending APDU command to Contact/Contactless Smart Card ... 148
4.6 The attentive point when use DCL mode. .. 149

5 Migration from SMART-50 to SMART-51 .. 151
5.1 Conversion of status codes for printer ... 151

5.1.1 Use the configuration file (SmartComm2.ini) .. 151
5.1.2 Use the DLL function ... 151

5.2 Conversion of configuration structure for a printer ... 151
5.3 Modification of SURFACE structure .. 152

6 Sample Code ... 153
6.1 VC++ Source: SmartCommonTest .. 153
6.2 VB Source : SmartDLL.VB .. 155
6.3 VB.NET Source : vb.NET Sample ... 157
6.4 Java Source : SmartJavaClass ... 159

1

1 Introduction

SMART Printer can be used through device driver so it can be printed in the same way as other printers’.

However, when a user operates more complex functions such as encoding data on the magnetic card,

duplex communication should be supported and each function should be followed step by step. “SMART

Printer SDK” enables to develop the customized software for software developers and it supports the

methods to operate various functions of printers.

[Compatibility]

SMART Printer SDK 2 is compatible with SDK 1 and it is added functions to support network printers.

Previous SmartCommon.dll in SDK1 is changed to SmartComm2.dll in SDK 2.

If your software is developed with SDK 1 and wants to use SDK 2, please change the “DLL” name from

SmartComm2.dll to SmartCommon.dll in your program.

[USB and Network Communication]

Basically, SMART Printer offers only USB port for communication with PC. However, by using “Network

Module”, Both USB and network can be used.

Figure 1. The Configuration of Basic Options.

Figure 1 shows the configuration of basic options and other options can be added as well. The options of

Flipper for double-sided printing and Magnetic Encoder are connected to PC directly and are controlled by

Printer Main Board. However, Contact Smart Card Encoder and Contactless Smart Card Encode options

2

are controlled by PC directly. For Smart Card encoding, a card is sent to the place for encoding by

controlling main board and is encoded by each encoder. Smart Card Encoder for SMART Printer uses

PC/SC Protocol. “SMART Printer SDK” offers various functions for smart card encoding but also it can be

encoded directly using PC/SC protocol.

Figure2 shows the configuration how the options are installed with Network module. First, Network

module should be installed to use SMART Printer on the network. After Network module is installed,

Network module controls USB and network communications as Figure 2. Network Module communicates

with PC using PC/SC protocol, so the encoding process should be done using “SMART Printer SDK” and it

means that direct control in PC is not available through PC/SC protocol. In case of using Network module,

Both Contact Smart Card Encoding and Contactless Smart Card Encoding are supported.

Figure 2. The Configuration of Using Network Module

“SMART Printer SDK” supports USB and network as the same interface for developers. Figure 3 shows

the configuration of “SMART Printer SDK” and “SMART Printer Interface” is the functions for developers

and can be used regardless of communication types. “SMART Printer Common Library” is the common

functions those are used in SDK and is used “USB Library” or “Network Library” according to the

communication types.

In the case of the configuration of basic options which is connected with USB, it communicates with

Smart Card Encoder using PC/SC protocol. However, if Network module is installed, the Smart Card

encoding process is through Network module. In the case of using encoding smart card encoding functions

from SDK, it communicates automatically according to the connection, so it is recommended not to control

PC/SC directly.

In case using Network module, basically, SSL (Secure Socket Layer) is supported and data is encrypted

in safety. For more information about Network module configuration, please refer to NetAdmin part of the

user manual.

3

Figure 3. The Configuration of SMART Printer SDK

[Using Printer Driver]

“SMART Printer SDK” has two operation modes, Driver and DCL (Direct Command Language) modes.

The Standard mode uses printer driver as Figure 4 (a) and DCL mode communicates with the printer

without printer driver as Figure 4 (b). Almost functions provided in this SDK work on both operation mode,

but some functions support one operation mode only. SmartComm_OpenDevice,

SmartComm_OpenDevice2, SmartComm_Print and SmartComm_CloseDevice are used for Driver mode

and SmartDCL_OpenDevice, SmartDCL_OpenDevice2, SmartDCL_Print and SmartDCL_CloseDevice are

used for DCL mode. In case of using network module, only DCL mode is supported. Please refer to

Function Reference.

4

Figure 4. SMART Printer Operation Mode

[Printer Operating Modes]

SMART Printer is operated by two modes, Standard and SBS (Step By Step). Standard mode is the same

as a general printer. In this mode, if printing data is sent, it prints an image immediately and ejects a card

automatically.

SBS mode can be set by SDK function. If a printer is set as SBS mode, all operations can be controlled

by step by step such as Card In, Card Out, Magnetic Stripe Read/Write, Contact IC Read/Write, Contactless

IC Read/Write so it is so helpful to add other functions after the printing process.

The main difference between Standard mode and SBS mode is, after printing, Card Out function that it is

done automatically or is done by another command. The default set of SMART Card printer is Standard

mode and it is set as a Standard mode in the factory when it comes out.

5

2 Getting Started

2.1 Construction of SMART Printer SDK

2.1.1 SMART Printer Documents

/Documents/English/*

English user’s manual for SMART Printer SDK

/Documents/Korean/*

Korean user’s manual for SMART Printer SDK

2.1.2 SMART Printer Libraries

/Lib/SmartComm2.dll

 Basic DLL to control local and network SMART Printer

/Lib/libcv.dll

/Lib/*.xml

Files for “Auto portrait” and “Auto Effect” functions when SmartComm2.dll refers CSD document.

2.1.3 SMART Printer Header Files

/Include/SmartComm2.dll.h

This file defines the structure and function of SmartComm2.

2.1.4 SMART Printer Reference Class

/Class/SmartComm2.h

C++ class header file to use SmartComm2.dll conveniently

/Class/SmartComm2.cpp

C++ class source file to use SmartComm2.dll conveniently

/Class/SmartComm2.dll.h

This file defines the structure and function of SmartComm2.dll.

2.1.5 SMART Printer Sample Code

/Sample/VC/*

VC++ Samples for controlling SMART Printer using SmartComm2.dll

/Sample/VB/*

VB6 Samples for controlling SMART Printer using SmartComm2.dll

6

/Sample/VB/*

VB.NET Samples for controlling SMART Printer using SmartComm2.dll

/Sample/JNI/*

Java (JNI) Samples for controlling SMART Printer using SmartComm2.dll

2.1.6 SMART Printer Drivers

/Drivers/Card Printer Device Driver/SMART/*

Drivers for SMART-50 and SMART-30 Printer

To install the driver, you should execute DDInstall.exe

/Drivers/Card Printer Device Driver/SMART51/*

Drivers for SMART-51 and SMART-31 Printer

To install the driver, you should execute DDInstall.exe

/Drivers/Contact Smart Card Reader/Gemalto PC Twin/*

Drivers for Gemalto contact smart card (IC).

/Drivers/Contactless Smart Card Reader/Omnikey 5121/*

Drivers for Omnikey contactless smart card (RF).

/Drivers/Contactless Smart Card Reader/DUALi DE-ABCM/*

Drivers for DUALi contactless smart card (RF).

2.1.7 SMART Firmwares

/Firmwares/Ethernet/smartnet2-fs-X.X.X.X.bin

Firmware for SMART Printer Ethernet Module’s file system. You can update it using

NetAdmin.exe.

/Firmwares/Ethernet/smartnet2-os-X.X.X.X.bin

Firmware for SMART Printer Ethernet Module’s operating system. You can update it using

NetAdmin.exe.

/Firmwares/Ethernet/smart-fs-X.X.X.X.bin

Firmware for SMART Printer old Ethernet Module’s file system. You can update it using

NetAdmin.exe. (This module is discontinued in 2015)

/Firmwares/Ethernet/smart-os-X.X.X.X.bin

Firmware for SMART Printer old Ethernet Module’s operating system. You can update it using

NetAdmin.exe. (This module is discontinued in 2015)

/Firmwares/Printer/50,30/SmartX_X_X.bin

Firmware for SMART-50 and SMART-30 Printer. You can update it using

CardPrinterFirmware.exe.

/Firmwares/Printer/50,30/SL_X_X_X.bin

Firmware for SMART-50 Laminator Module. You can update it using CardPrinterFirmware.exe.

/Firmwares/Printer/51,31/Smart51_app_X_X_X_SPI.bin

7

Firmware for SMART-51 and SMART-31 Printer. You can update it using

CardPrinterFirmware.exe.

/Firmwares/Printer/51,31/Smart51Laminator_X_X_X.bin

Firmware for SMART-51 Laminator Module. You can update it using CardPrinterFirmware.exe.

/Firmwares/Printer/51,31/Smart51Flipper_X_X_X.bin

Firmware for SMART-51 and SMART-31 Flipper Module. You can update it using

CardPrinterFirmware.exe.

2.1.8 SMART Utilities

/Utilities/CardPrinterDiagnostic.exe

A program to check sensors and motors in SMART Printer.

/Utilities/CardPrinterFirmware.exe

A program for updating the firmware of SMART Printer

Firmware which is in “/Firmwares/Printer” folder will be updated to SMART Printer

/Utilities/CardPrinterInfo.exe

A Program for checking printer information

/Utilities/CardPrinterConfig.exe

A program to manage SMART Printer’s setting.

/Utilities/CardPrinterConfig.ini

An information file which is used in CardPrinterConfig.exe.

/Utilities/CardPrinterTest.exe

A program to test SMART Printer

/Utilities/CardPrinterTest.ini

An information file which is used in CardPrinterTest.exe.

/Utilities/NetAdmin.exe

A program to manage settings of ethernet module in the SMART printer.

/Utilities/SCardMonitor.exe

A program to view events of PC/SC service.

/Utilities/SmartComm2.dll

Basic DLL to control local and network SMART Printer.

/Utilities/viewprn.exe

A program to show .prn files.

2.2 Usage of Driver Mode

The basic way to program using SmartComm2.dll is as follows;

8

 SMART_PRINTER_LIST list;

 HSMART smart;

 SmartComm_GetDeviceList2(&list); // Get list of Printer

 SmartComm_OpenDevice2(&smart, list.item[0].desc,

SMART_OPENDEVICE_BYDESC); // Open first printer

 SmartComm_SBSStart(smart); // Turn on SBS mode

 //

 // SmartComm_XXX(); // Call functions

 //

 SmartComm_SBSEnd(smart); // Turn off SBS mode

 SmartComm_CloseDevice(smart); // Close Printer

To operate SMART Printer, bring the information of printers those are connected to local or network

using SmartComm_GetDeviceList2. Description, printer ID, the name of the printer driver, and connection

type(USB or Network) are included in the information. Printer ID is the string which can distinguish printers

and the IDs of all printers are set as “SMART” when those are produced in a factory. In case of installing

one Smart printer to PC, you don’t need to change the ID. However, if you want to use more than two

SMART Printers, the string of ID should be changed. You can refer to the SMART Printer user manual to

change the string of ID.

In case, more than two printers have the same printer ID on the network, you can use printer’s

description instead of printer ID to open the device.

After you check the printer’s ID or description, open the printer using SmartComm_OpenDevice2. If

SmartComm_OpenDevice2 succeeds, smart will not return NULL;

After opening the printer, use SmartComm_SBSStart function and the printer can be operated as

SBS(Step-By-Step) mode.

After SmartComm_SBSStart starts, you can operate printer step by step. For example, to print a card,

you can use commands such as CardIn, DrawImage, Print, DoPrint, CardOut.

Before finishing operation of SMART Printer, end SBS mode using SmartComm_SBSEnd and close

printer using CloseDevice.

Please be sure, the printer driver is installed on your PC, before you use SmartComm_OpenDevice2

function to open a printer. Because the opening function refers the set values of the driver, so if the driver

is not installed, there could be some errors when you try to operate printer using other functions. (If you

want to operate the printer, not using printer driver, use DCL mode)

For the compatibility with SDK1, SmartComm_GetDeviceList, SmartComm_GetDeviceInfo,

SmartComm_OpenDevice, SmartDCL_OpenDevice functions can be used as the same with SDK 1. Also

SmartComm_GetDeviceList2, SmartComm_GetDeviceInfo2, SmartComm_OpenDevice2, SmartDCL_

OpenDevice2 are added in SDK 2 and this functions are almost the same as the previous functions but

changed little bit.

For more detail information, refer to the Function Reference and Sample Code, please.

9

2.3 Usage of DCL Mode

The basic method to control SMART Printer using DCL mode is as follows.

 SMART_PRINTER_LIST list;

 HSMART smart;

 SmartComm_GetDeviceList2(&list); // Get list of Printer

 SmartDCL_OpenDevice2(&smart, list.item[0].desc,

 SMART_OPENDEVICE_BYDESC, DMORIENT_LANDSCAPE);

 // Open first printer

 SmartComm_SBSStart(smart); // Turn on SBS mode

 //

 // SmartComm_XXX(); // Call desired functions

 // SmartDCL_XXX(); // Call DCL functions

 //

 SmartComm_SBSEnd(smart); // Turn off SBS mode

 SmartDCL_CloseDevice(smart); // Close Printer

DCL mode usage is similar to the usage of driver mode.

First, get printer information (those are connected to USB or network), using

SmartComm_GetDeviceList2. After you get the printer’s ID and description, open the printer using

SmarDCL_OpenDevice2. If SmartDCL_OpenDevice2 succeeds, the function will not return a NULL value.

After you succeed to open the printer, operate Step-By-Step mode using SmartComm_SBSStart.

After SmartComm_SBSStart start, you can operate various functions to the printer.

To finish operating the printer, exit Step-By-Step mode using SmartComm_SBSEnd and then use

SmartDCL_CloseDevice to close the printer.

In DCL mode, Users can make printing data directly instead of using CSD file or printing with

SmartComm_DrawXXX. Get the structure of SMART_SURFACE or SMART51_SURFACE of the front

side and back side using SmartDCL_GetSurface or SmartDCL_GetSurface2. The SMART_SURFACE

structure includes printing features and DC, therefore, users can draw printing data directly to DC.

Caution! When you make printing data using SmartComm_OpenDocument or SmartComm_DrawXXX,

data in SMART_SURFACE or SMART51_SURFACE DC will be ignored.

For further information, refer to Function Reference and Sample Code.

Followings are the structure definition of SMART_SURFACE that used in SMART-50 and SMART-30.

typedef struct {

 DWORD side;

 DWORD orientation;

 DWORD ribbon;

 DWORD ribbon_type;

10

 DWORD width;

 DWORD height;

} SMART_SURFACE_PROPERTIES;

typedef struct {

 HDC hdcColor;

 HDC hdcResin;

 HDC hdcFluorescent;

 HDC hdcOverlay;

 HBITMAP hBmpColor;

 HBITMAP hBmpResin;

 HBITMAP hBmpFluorescent;

 HBITMAP hBmpOverlay;

 BYTE * lpPRN;

} SMART_SURFACE_BITMAPS;

typedef struct {

 DWORD dwCCMain;

 DWORD dwCCYellow;

 DWORD dwCCMagenta;

 DWORD dwCCCyan;

 DWORD dwCCBlack;

 DWORD dwCCOverlay;

 DWORD dwDocRibbonSplit;

 DWORD dwDocFlip;

 DWORD dwBPText;

 DWORD dwBPDot;

 DWORD dwBPThreshold;

 DWORD dwBPDitherDegree;

 DWORD dwEdgeSize;

 DWORD dwEjectCard;

 DWORD dwErase;

 DWORD dwDocHeatControl;

 DWORD dwMSTrack1;

 DWORD dwMSTrack2;

 DWORD dwMSTrack3;

 DWORD dwJISTrack;

 DWORD dwManualEncoding;

 WCHAR strMSTrack1[1024];

 WCHAR strMSTrack2[1024];

 WCHAR strMSTrack3[1024];

 WCHAR strJISTrack[1024];

 DWORD dwDocSupply;

11

 DWORD dwDocTray;

 DWORD dwDocRibbon;

 DWORD dwDocResin;

 DWORD dwDocQuality;

 DWORD dwDocColor;

 DWORD dwDocDither;

 DWORD dwDocPrintSide;

 DWORD dwDocMediaFront;

 DWORD dwDocMediaBack;

 DWORD dwDocLaminateSide;

 DWORD reserved;

 WCHAR strDocMediaUserFront[1024];

 WCHAR strDocMediaUserBack[1024];

} SMART_SURFACE_OEMDEV;

typedef struct {

 SMART_SURFACE_PROPERTIES prop;

 SMART_SURFACE_BITMAPS bmp;

 SMART_SURFACE_OEMDEV oemdev;

} SMART_SURFACE;

SMART_SURFACE_PROPERTIES

Side Indicates printing sides information

#define PAGE_FRONT 0 // front

#define PAGE_BACK 1 // back

orientation Indicates printing direction.

Defined at SmartDCL_OpenDevice2()

#define DMORIENT_PORTRAIT 1 // Vertical

#define DMORIENT_LANDSCAPE 2 // Horizontal

ribbon Defines which kind of ribbon is used.

ribbon_type Indicates Standard / Premium ribbon.

width Indicates horizontal card width

The width is determined by orientation value when SmartDCL_OpenDevice2

function is called.

height Indicates vertical card height.

The height is determined by orientation value when SmartDCL_OpenDevice2

function is called.

12

SMART_SURFACE_BITMAPS

hdcColor DC for color panel printing

hdcResin DC for resin panel printing

hdcFluorescent DC for fluorescent printing

hdcOverlay DC for overlay panel printing

hBmpColor Bitmap for color panel printing

hBmpResin Bitmap for resin panel printing

hBmpFluorescent Bitmap for fluorescent printing

hBmpOverlay Bitmap for overlay panel printing

lpPRN Printing data buffer-treated printing format

SMART_SURFACE_OEMDEV

dwCCMain Controls the all color density to adjust printing quality.

Available value is from -100 to 100.

The bigger number is the higher its density.

dwCCYellow Controls the yellow density.

Available value is from -100 to 100.

The bigger number is the higher its density.

dwCCMagenta Controls the Magenta density.

Available value is from -100 to 100.

The bigger number is the higher its density.

dwCCCyan Controls the Cyan density.

Available value is from -100 to 100.

The bigger number is the higher its density.

dwCCBlack Controls the Resin Black density.

Available value is from -100 to 100.

The bigger number is the higher its density.

dwCCOverlay Controls the Overlay density.

Available value is from -100 to 100.

The bigger number is the higher its density.

dwDocRibbonSplit Sets the part of ribbon to print opposite side.

This function is applied when ribbon type is YMC.K.O and dual sides are

printed. YMC prints front side -> card rotates -> Black(K) prints on back side -

> card rotates -> Overlay(0) coats on front side.

If the value is“0”, it does not separate and if the value is “1”, it separates.

dwBPText Defines which level of density will be extracted to resin when extract text with

resin panel. The default is to extract genuine black text.

The index is from 0 to 100. The bigger number is the higher density.

dwBPDot Defines which level of density will be extracted to resin when extract dot with

13

resin panel. The default is to extract genuine black text.

The index is from 0 to 100. The bigger number is the higher density.

dwBPThreshold Defines which level of color will be changed to black. The default value is

“50”. The index is from 0 to 100. The bigger number is the higher density.

dwBPDitherDegree Defines the level of dithering when black dithering is used. When the number

is big, the degree of dispersion is big and the printing looks soft. When the

number is small, the degree of dispersion is small and the printing looks

rough.

The index is from 0 to 100.

dwEdgeSize Defines how wide the edge does not print when the “dwDocEdgeFront,

dwDocEdgeBack”value is “Use”.

The index is from 0 to 100 and the default value is 20.

dwEjectCard Defines whether printed card ejects or not. If the value is “0”, the card will be

ejected and the value is “1”, the card will not be ejected after printing.

dwErase At rewritable printer, sets “Erase” dignity.

The default is 50 and 0 to 100 value can be used.

dwDocHeatControl Defines whether thermal printer head temperature is controlled or not.

If the value is “0”, it is not controlled and if the value is “1”, it is controlled.

dwMSTrack1 Defines ISO type track 1 encoding mode.

Defines which encoding mode will be used when printing and magnetic

encoding do at the same time.

There are 6 type encoding modes, that is Normal, Reverse, Bit, Normal HiCo,

Reverse Bit, Bit HiCo.

Normal : Encode input date with the normal way

Reverse : Encode input date with the reverse way

Bit : Treat input data as binary data(input 0 or 1)

Hico means encode at HiCo card.

#define SMART_ENCODE_NORMAL 0x00

#define SMART_ENCODE_REVERSE 0x01

#define SMART_ENCODE_BIT 0x02

#define SMART_ENCODE_HICO_NORM 0x03

#define SMART_ENCODE_HICO_REV 0x04

#define SMART_ENCODE_HICO_BIT 0x05

dwMSTrack2 Defines ISO type track2 encoding mode.

dwMSTrack3 Defines ISO type track3 encoding mode.

dwJISTrack Defines JIS II type encoding mode.

dwManualEncoding dwManualEncoding is used to magnetic encoding using print data. If the

magnetic related function is used, magnetic encoding and reading will be

done directly independent of printing.

14

0 – Not use
1 – Use

strMSTrack1 ISO type track1 encoding data

strMSTrack2 ISO type track2 encoding date

strMSTrack3 ISO type track3 encoding data

strJISTrack JIS II type encoding data

dwDocSupply Defines hopper and a fixed value is “0”.

#define SMART_SUPPLY_AUTO 0x00

#define SMART_SUPPLY_HOPPER 0x01

dwDocTray #define SMART_TRAY_CR80 0x00

dwDocRibbon Defines which kind of ribbon is used.

dwDocRibbon is automatically set when you open the printer with

SmartDCL_OpenDevice2 function. If you want to change that value, read

ribbon type with SmartComm_GetRibbonType and set a new value.

#define SMART_RIBBON_YMCKO 0x00 // YMCKO

#define SMART_RIBBON_YMCKOK 0x01 // YMCKO.K

#define SMART_RIBBON_hYMCKO 0x02 // half YMCKO

#define SMART_RIBBON_KO 0x03 // KO

#define SMART_RIBBON_K 0x04 // K

#define SMART_RIBBON_BO 0x05 // BO

#define SMART_RIBBON_B 0x06 // B

#define SMART_RIBBON_BYMCKO 0x07 // BYMCKO

#define SMART_RIBBON_YMCKFO 0x08 // YMCKFO

#define SMART_RIBBON_REWRITABLE 0x09 // Rewritable Printer

#define SMART_RIBBON_hYMCKOKO 0x0B // half YMCKO.KO

dwDocResin Defines the method when a print color image, extract black with resin panel

and print with high density. Resin extract method has Black Objects, Black

Texts, Black Dots and Not Use.

Black Objects: Extract black text and black drawing automatically and print

with resin panel

Black Texts: Extract black text and print with resin panel

Black Dot : Extract all blacks among print data and print with resin panels

Not Use: Do not use resin panel

#define SMART_RESIN_BLACKOBJECT 0x00

#define SMART_RESIN_BLACKTEXT 0x01

#define SMART_RESIN_BLACKTDOT 0x02

#define SMART_RESIN_NOTUSE 0x03

dwDocQuality Defines printing quality.

15

Standard: High quality

Fast : A little bit lower quality than standard but fast printing speed.

Partial : Print only image exists.

Semi-Partial : Print from image starts to card end.

We recommend using “Standard” mode to maintain high printing quality.

#define SMART_QUALITY_STANDARD 0x00

#define SMART_QUALITY_VERYHIGH 0x01

#define SMART_QUALITY_PARTIAL 0x02

#define SMART_QUALITY_SEMIPARTIAL 0x03

dwDocColor Defines whether print color or black and white when the color ribbon is used.

#define SMART_COLOR_COLOR 0x00

#define SMART_COLOR_BLACKNWHITE 0x01

dwDocDither Defines which dithering algorithm will be used when print black and white with

resin panel.

Threshold: Defines black and white with standard density.

Random: Use random function during dithering

Diffusion: Use diffusion algorithm

We recommend diffusion dither.

#define SMART_DITHER_THRESHOLD 0x00

#define SMART_DITHER_RANDOM 0x01

#define SMART_DITHER_DIFFUSION 0x02

dwDocPrintSide Defines single side print or dual side print

The value which comes from “SmartDCL_Print” function to print side

parameter is saved. If flipper is not installed, Front is used and the flipper is

installed, choose “Front” when print front side and choose “Both” when

printing dual side.

You can check if flipper is installed or not call “ SmartComm_GetStatus”

function.

#define SMART_PRINTSIDE_FRONT 0x00

#define SMART_PRINTSIDE_BOTH 0x01

dwDocMediaFront Defines where not to print according to card type.

dwDocMediaBack Defines where not to print according to card type.

16

dwDocLaminateSide Defines laminate print side. If a laminator is not installed in the printer this

value is not used. To check a laminator is installed, call

SmartComm_GetStatus function.

#define SMART_LAMINATESIDE_NONE 0x00

#define SMART_LAMINATESIDE_TOP 0x01

#define SMART_LAMINATESIDE_BOTTOM 0x02

#define SMART_LAMINATESIDE_BOTH 0x03

strDocMediaUserFront In dwDocMediaFront, when user-defined printing area is used, mask file is

designated.

strDocMediaUserBack In strDocMediaUserBack, when user-defined printing area is used, mask file

is designated.

Followings are the structure definition of SMART51_SURFACE that is used in SMART-51 and 31.

typedef struct {
 DWORD side;
 DWORD orientation;
 DWORD ribbon;
 DWORD ribbon_type;
 DWORD width;
 DWORD height;
} SMART51_SURFACE_PROPERTIES;

typedef struct {
 HDC hdcColor;
 HDC hdcResin;
 HDC hdcFluorescent;
 HDC hdcOverlay;
 HBITMAP hBmpColor;
 HBITMAP hBmpResin;
 HBITMAP hBmpFluorescent;
 HBITMAP hBmpOverlay;
 BYTE * lpPRN;
} SMART51_SURFACE_BITMAPS;

typedef struct {
 DWORD dwASMain;
 DWORD dwASYellow;
 DWORD dwASMagenta;
 DWORD dwASCyan;
 DWORD dwASBlack;
 DWORD dwASOverlay;
 DWORD dwASCorrectColor;
 DWORD dwASCorrectMono;
 DWORD dwASCorrectOverlay;

17

 DWORD dwASBPText;
 DWORD dwASBPDot;
 DWORD dwASBPThreshold;
 DWORD dwASBPDitherDegree;
 DWORD dwASBPResin;
 DWORD dwASBPResinOnly;
 DWORD dwASErase;
 DWORD dwASFastAlignment;

 DWORD dwASWaitRFUse;
 DWORD dwASWaitRFSide;
 DWORD dwASWaitRFPos;
 DWORD dwASWaitRFTime;
 DWORD dwASWaitICUse;
 DWORD dwASWaitICSide;
 DWORD dwASWaitICPos;
 DWORD dwASWaitICTime;
 BYTE btAsReserved[40];

 DWORD dwIOSupply;
 DWORD dwIOTray;

 DWORD dwPrtUse;
 DWORD dwPrtSide;
 DWORD dwPrtColorFront;
 DWORD dwPrtColorBack;
 DWORD dwPrtFlipFront;
 DWORD dwPrtFlipBack;
 DWORD dwPrtMediaFront;
 DWORD dwPrtMediaBack;
 WCHAR strPrtMediaUserFront[1024];
 WCHAR strPrtMediaUserBack[1024];
 DWORD dwPrtRibbon;
 DWORD dwPrtSpeed;
 DWORD dwPrtQuality;
 DWORD dwPrtDither;
 DWORD dwPrtHeatControl;
 DWORD dwPrtRibbonSplit;
 BYTE btPrtReserved[40];

 DWORD dwLamUse;
 DWORD dwLamSide;
 DWORD dwLamOverlay;
 BYTE btLamReserved[40];

 DWORD dwEncUse;
 DWORD dwEncSide;
 DWORD dwEncCoer;
 DWORD dwEncMagRepeat;
 DWORD dwEncMagFlipBefore;
 DWORD dwEncMagFlipAfter;

18

 DWORD dwEncUseUserOption;
 DWORD dwEncUserHeadValue;
 DWORD dwEncFormat1;
 DWORD dwEncFormat2;
 DWORD dwEncFormat3;
 DWORD dwEncFormatJ;
 DWORD dwEncDensity1;
 DWORD dwEncDensity2;
 DWORD dwEncDensity3;
 DWORD dwEncDensityJ;
 DWORD dwEncOption1;
 DWORD dwEncOption2;
 DWORD dwEncOption3;
 DWORD dwEncOptionJ;
 WCHAR strEncTrack1[1024];
 WCHAR strEncTrack2[1024];
 WCHAR strEncTrack3[1024];
 WCHAR strEncJISTrack[1024];
 WCHAR strEncMSST1[10];
 WCHAR strEncMSST2[10];
 WCHAR strEncMSST3[10];
 WCHAR strEncMSSTJ[10];
 WCHAR strEncMSET1[10];
 WCHAR strEncMSET2[10];
 WCHAR strEncMSET3[10];
 WCHAR strEncMSETJ[10];
 BYTE btEncReserved[40];

 BYTE reserved[100];
} SMART51_SURFACE_OEMDEV;

typedef struct {
 SMART51_SURFACE_PROPERTIES prop;
 SMART51_SURFACE_BITMAPS bmp;
 SMART51_SURFACE_OEMDEV oemdev;
} SMART51_SURFACE;

SMART51_SURFACE_PROPERTIES

side Indicate printing page information

#define PAGE_FRONT 0 // front

#define PAGE_BACK 1 // back

orientation Indicate printing direction

Define at SmartDCL_OpenDevice2()

#define DMORIENT_PORTRAIT 1 // vertical

#define DMORIENT_LANDSCAPE 2 // horizontal

19

ribbon Defines which kind of ribbon is used.

ribbon_type Indicates Standard / Premium ribbon.

width Indicates horizontal card width

The width is determined by orientation value when SmartDCL_OpenDevice2

function is called.

height Indicates vertical card height.

The height is determined by orientation value when SmartDCL_

OpenDevice2 function is called.

SMART51_SURFACE_BITMAPS

hdcColor DC for color panel printing

hdcResin DC for resin panel printing

hdcFluorescent DC for fluorescent printing

hdcOverlay DC for overlay panel printing

hBmpColor Bitmap for color panel printing

hBmpResin Bitmap for resin panel printing

hBmpFluorescent Bitmap for fluorescent printing

hBmpOverlay Bitmap for overlay panel printing

lpPRN Printing data buffer-treated printing format

SMART51_SURFACE_OEMDEV

dwASMain Controls the all color density to adjust printing quality.

Available value is from -100 to 100.

The bigger number is the higher its density.

dwASYellow Controls the yellow density.

Available value is from -100 to 100.

The bigger number is the higher its density.

dwASMagenta Controls the Magenta density.

Available value is from -100 to 100.

The bigger number is the higher its density.

dwASCyan Controls the Cyan density.

Available value is from -100 to 100.

The bigger number is the higher its density.

dwASBlack Controls the Resin Black density.

Available value is from -100 to 100.

The bigger number is the higher its density.

dwASOverlay Controls the Overlay density.

20

Available value is from -100 to 100.

The bigger number is the higher its density.

dwASCorrectColor Controls the Color Correction.

Available value is from -32 to 32.

The bigger number is the higher its thickness.

dwASCorrectMono Controls the Resin Black Correction.

Available value is from -32 to 32.

The bigger number is the higher its thickness.

dwASCorrectOverlay Controls the Overlay Correction.

Available value is from -32 to 32.

The bigger number is the higher its thickness.

dwASBPText Defines which level of density will be extracted to resin when extract text

with resin panel. The default is to extract genuine black text.

The index is from 0 to 100. The bigger number is the higher density.

dwASBPDot Defines which level of density will be extracted to resin when extract dot

with resin panel. The default is to extract genuine black dot.

The index is from 0 to 100. The bigger number is the higher density.

dwASBPThreshold Defines which level of color will be changed to black. The default value

is “50”. The index is from 0 to 100. The bigger number is the higher

density.

dwASBPDitherDegree Defines the level of dithering when black dithering is used. When the

number is big, the degree of dispersion is big and the printing looks soft.

When the number is small, the degree of dispersion is small and the

printing looks rough.

The index is from 0 to 100.

dwASBPResin Defines the method when a print color image, extract black with resin

panel and print with high density. Resin extract method has Black

Objects, Black Texts, Black Dots and Not Use.

Black Objects: Extract black text and black drawing automatically and

print with resin panel

Black Texts: Extract black text and print with resin panel

Black Dot : Extract all blacks among print data and print with resin

panels

Not Use: Do not use resin panel

#define SMART_RESIN_OBJECT 0

#define SMART_RESIN_TEXT 1

#define SMART_RESIN_DOT 2

#define SMART_RESIN_NOTUSE 3

dwASBPResinOnly Prints Black Dot by Resin only if the value of dwASBPResin is

SMART_RESIN_DOT and dwASBPResinOnly sets 1.

21

dwASErase Controls the Erase density in the Rewritable printer.

Available value is from -100 to 100.

The default value is “50”.

dwASFastAlignment Not use.

dwASWaitRFUse Not use.

dwASWaitRFSide Not use.

dwASWaitRFPos Not use.

dwASWaitRFTime Not use.

dwASWaitICUse Not use.

dwASWaitICSide Not use.

dwASWaitICPos Not use.

dwASWaitICTime Not use.

dwASReserved[10] Not use.

dwIOSupply Options for card supply.

#define SMART_SUPPLY_AUTO 0

dwDocTray Options for card type.

#define SMART_TRAY_CR80 0

dwPrtUse Indicates printing or not

0 – Not print

1 – Print

dwPrtSide Defines single side print or dual side print

The value which comes from “SmartDCL_Print” function to print side

parameter is saved. If flipper is not installed, Front is used and the

flipper is installed, choose “Front” when print front side and choose

“Both” when printing dual side.

You can check if flipper is installed or not by calling

“SmartComm_GetStatus” function.

#define SMART51_PRINTSIDE_FRONT 0

#define SMART51_PRINTSIDE_BOTH 2

dwPrtColorFront Defines whether print Color or Black & White when printing on front

side.

#define SMART_COLOR_COLOR 0

#define SMART_COLOR_BLACKNWHITE 1

dwPrtColorBack Defines whether print Color or Black & White when printing on back

side.

dwPrtFlipFront Defines the method of flipping when printing on the front side.

0 – Do not flip

1 – Flip vertical

2 – Flip horizontal

22

3 – Flip vertical & horizontal

The default value is “0”

dwPrtFlipBack Defines the method of flipping when printing on back side.

dwPrtMediaFront Defines the media mask type when printing on the front side.

The default value is “0”.

0 – Standard card.

1 - Smart card.

2 - Smart card (Right Only).

3 - ISO Magnetic Stripe card.

4 - JIS Magnetic Stripe card.

5 - Smart card + ISO Magnetic Stripe card

6 - No Overlay.

7 - User Defined.

#define SMART_MASK_STANDARD 0

#define SMART_MASK_SMART 1

#define SMART_MASK_SMARTRIGHT 2

#define SMART_MASK_MSISO 3

#define SMART_MASK_MSJIS 4

#define SMART_MASK_SMARTMSJIS 5

#define SMART_MASK_NOOVERLAY 6

#define SMART_MASK_USERDEFINED 7

dwPrtMediaBack Defines the media mask type when printing on back side.

strPrtMediaUserFront Defines the path of the user-defined mask file when the User Defined(7)

option is selected in dwPrtMediaFront

strPrtMediaUserBack Defines the path of the user-defined mask file when the User Defined(7)

option is selected in dwPrtMediaBack

dwPrtRibbon Defines the ribbon type

dwDocRibbon is automatically set when you open the printer with

SmartDCL_OpenDevice2 function. If you want to change that value,

read ribbon type with SmartComm_GetRibbonType or

SmartComm_GetRibbonInfo and set a new value.

#define SMART_RIBBON_YMCKO 0 // YMCKO

#define SMART_RIBBON_YMCKOK 1 // YMCKO.K

#define SMART_RIBBON_hYMCKO 2 // half YMCKO

#define SMART_RIBBON_KO 3 // KO

#define SMART_RIBBON_K 4 // K

#define SMART_RIBBON_BO 5 // BO

#define SMART_RIBBON_B 6 // B

#define SMART_RIBBON_BYMCKO 7 // BYMCKO

23

#define SMART_RIBBON_YMCKFO 8 // YMCKFO

#define SMART_RIBBON_REWRITABLE 9 // Rewritable Printer

#define SMART_RIBBON_hYMCKOKO 11 // half YMCKO.KO

#define SMART_RIBBON_YMCKOKR 12 // YMCKO.KR

dwPrtSpeed Defines printing speed

High Quality : Good quality but slower

Normal : High speed but worse quality

We recommend High Quality.

#define SMART51_SPEED_HIGHQUALITY 0x00

#define SMART51_SPEED_STANDARD 0x01

dwPrtQuality Defines the area of printing on the card

Standard : All area over the card

Partial : an area that the image only exists in the card

#define SMART51_QUALITY_STANDARD 0x00

#define SMART51_QUALITY_PARTIAL 0x01

dwPrtDither Defines which dithering algorithm will be used when print black and

white with resin panel.

Threshold: Defines black and white with standard density.

Random: Use random function during dithering

Diffusion: Use diffusion algorithm

We recommend diffusion dither.

#define SMART_DITHER_THRESHOLD 0

#define SMART_DITHER_RANDOM 1

#define SMART_DITHER_DIFFUSION 2

#define SMART_DITHER_HALFTONE 3

#define SMART_DITHER_HALFTONE2 4

dwPrtHeatControl Defines whether use Heat Control option or not

The default value is “1”.

0 – Not use

1 - Use

dwPrtReserved Not use

dwLamUse Defines whether laminate or not.

If a laminator is not installed in the printer this value is “0”. To check a

laminator is installed, call SmartComm_GetStatus function.

0 – Not laminate.

1 - Laminate.

dwLamSide Defines laminate print side.

#define SMART_LAMINATESIDE_NONE 0x00

#define SMART_LAMINATESIDE_TOP 0x01

24

#define SMART_LAMINATESIDE_BOTTOM 0x02

#define SMART_LAMINATESIDE_BOTH 0x03

dwLamOverlay Defines whether print overlay or not before laminating

0 – Not print overlay

1 – Print overlay

dwLamReserved Not use

dwEncUse Defines whether magnetic stripe encoding or not.

To check a Magnetic encoder is installed, call SmartComm_GetStatus

function.

0 – Not encode on the magnetic stripe

1 - Encode on the magnetic stripe

dwEncSide Options for the position of Magnetic stripe encoder in the printer

0 - Bottom

1 - Top

dwEncCoer Options for coercivity to encode Magnetic stripe

#define SMART_MAG_LOCO 0

#define SMART_MAG_HICO 1

#define SMART_MAG_SPCO 2

#define SMART_MAG_AUTO 3

dwEncMagRepeat Defines the retry count of encoding when encoding is failed.

#define SMART_MAG_NOREPEAT 0

#define SMART_MAG_REPEAT1 1

#define SMART_MAG_REPEAT2 2

#define SMART_MAG_REPEAT3 3

#define SMART_MAG_REPEAT4 4

dwEncMagFlipBefore Defines whether flip a card or not before encoding

0 – Not flip

1 - Flip.

dwEncMagFlipAfter Defines whether flip a card or not after encoding

0 – Not flip

1 - Flip.

dwEncUseUserOption Defines the current value (mAh) when encoding

0 – Default value

1 – Use the user defined value in dwEncUseUserHeadValue

dwEncUseUserHeadValue Defines the current value (mAh) by user directly when

dwEncUseUserOption is 1.

The default value is “300”.

The index is from 0 to 800.

dwEncFormat1 Defines Format on track 1.

The default value is “0”.

25

0 - ISO IATA Format

1 - ISO ABA Format

2 - ISO MINS Format

3 - JIS II Format

4 - BITS Mode Format

#define SMART_MAG_FORMAT_IATA 0

#define SMART_MAG_FORMAT_ABA 1

#define SMART_MAG_FORMAT_MINS 2

#define SMART_MAG_FORMAT_JIS2 3

#define SMART_MAG_FORMAT_BITS 4

dwEncFormat2 Defines Format on track 2.

Default value is “1”.

dwEncFormat3 Defines Format on track 3

Default value is “2”.

dwEncFormatJ Defines Format on JIS track

Default value is “3”

dwEncDensity1 Defines Writing Density on track 1

Default value is “210”

dwEncDensity2 Defines Writing Density on track 2

Default value is “75”

dwEncDensity3 Defines Writing Density on track 3

Default value is “210”

dwEncDensityJ Defines Writing Density on JIS track

Default value is “210”

dwEncOption1 Defines encoding type on track 1

Default value is “0”

0 - ISO

1 - ISO Ballys 2

2 - ISO Ballys 3

dwEncOption2 Defines encoding type on track 2

Default value is “0”

dwEncOption3 Defines encoding type on track 1

Default value is “0”

dwEncOptionJ Defines encoding type on track 1

Default value is “0”

strEncTrack1 ISO type track1 encoding data

strEncTrack2 ISO type track2 encoding date

26

strEncTrack3 ISO type track3 encoding data

strEncJISTrack JIS II type encoding data

strEncMSST1 Defines the start string when encoding on track 1 ISO type by using a

text string

strEncMSST2 Defines the start string when encoding on track 2 ISO type by using a

text string

strEncMSST3 Defines the start string when encoding on track 3 ISO type by using a

text string

strEncMSSTJ Defines the start string when encoding on track JIS type by using a text

string

strEncMSET1 Defines the end string when encoding on track 1 ISO type by using a

text string

strEncMSET2 Defines the end string when encoding on track 2 ISO type by using a

text string

strEncMSET3 Defines the end string when encoding on track 3 ISO type by using a

text string

strEncMSETJ Defines the end string when encoding on track JIS type by using a text

string

dwEncReserved[10] Not use

Reserved[100] Not use

27

3 Function Reference

3.1 Return Values

If the functions in “SMART Printer SDK” are operated successfully, it will return to 0 (SM_SUCCESS). If

there is an error, it returns a negative number. Each error is defined as below in SmartComm2.dll.h.

#define SM_SUCCESS 0 // Success
#define SM_FAIL -1 // Generic Failure
#define SM_F_FOUNDNODEV 0x80000000 // there is no device to use.
#define SM_F_INVALIDDEVIDX 0x80000001 // index of device is out of bound.
#define SM_F_INVALIDBUFPOINTER 0x80000002 // invalid buffer pointer. (may be null)
#define SM_F_NOTEXISTDEV 0x80000003 // device is not exist or not connected
#define SM_F_INVALIDPARAM 0x80000004 // invalid parameter value.
#define SM_F_DEVOPENFAILED 0x80000005 // device open failed.
#define SM_F_DEVIO 0x80000006 // device io operation is failed.
#define SM_F_FOUNDNODRV 0x80000007 // not found driver or cannot acquire
 // DEVMODE from driver.
#define SM_F_INVALIDHANDLE 0x80000008 // invalid handle value.
#define SM_F_CARDISINSIDE 0x80000009 // card is already inside of device.
#define SM_F_NOCARDISINSIDE 0x8000000A // no card is inside of device.
#define SM_F_HOPPEREMPTY 0x8000000B // no cards are in hopper.
#define SM_F_NOCARDONBOTH 0x8000000C // no card both hopper and inside.
#define SM_F_WAITTIMEOUT 0x8000000D // timeout occured while wait...
#define SM_F_CASEOPEN 0x8000000E // case is opened.
#define SM_F_ERRORSTATUS 0x8000000F // current status has error flag.
#define SM_F_CARDIN 0x80000010 // card-in action is failed.
#define SM_F_CARDOUT 0x80000011 // card-out action is failed.
#define SM_F_CARDOUTBACK 0x80000012 // card-back-out action is failed.
#define SM_F_MOVE2MAG 0x80000013 // card move (to magnetic) is failed.
#define SM_F_MOVE2IC 0x80000014 // card move (to IC) is failed.
#define SM_F_MOVE2RF 0x80000015 // card move (to RF) is failed.
#define SM_F_MOVE2ROT 0x80000016 // card move (to Flipper) is failed.
#define SM_F_MOVE2DEV 0x80000017 // card move (from Flipper) is failed.
#define SM_F_MAGRW 0x80000018 // magnetic read/write is failed,
#define SM_F_NOPRINTDATA 0x80000019 // printer failed to receive print data.
#define SM_F_PRINT 0x8000001A // print failed.
#define SM_F_SEEKRIBBON 0x8000001B // seek-ribbon is failed.
#define SM_F_MOVERIBBON 0x8000001C // move-ribbon is failed.
#define SM_F_EMPTYRIBBON 0x8000001D // ribbon is empty.
#define SM_F_ICHUP 0x8000001E // ic-head up failed.
#define SM_F_ICHDN 0x8000001F // ic-head down failed.
#define SM_F_ROTTOP 0x80000020 // rotate to top is failed.
#define SM_F_ROTBOTTOM 0x80000021 // rotate to bottom is failed.
#define SM_F_REQNOMAGTRACK 0x80000022 // requested no magnetic track.
#define SM_F_REQMULTIMAGTRACK 0x80000023 // requested multiple mag. tracks
#define SM_F_FILENOTFOUND 0x80000024 // file not found.
#define SM_F_FIELDNOTFOUND 0x80000025 // field is not exist.
#define SM_F_IMAGELOAD 0x80000026 // failed to load image.
#define SM_F_CREATEDC 0x80000027 // dc creation is failed.
#define SM_F_VERIFYDRV 0x80000028 // driver verification is failed. may the
 // driver is not ours.
#define SM_F_SPOOLING 0x80000029 // failed to make spool data.
#define SM_F_DEVNOTOPENED 0x8000002A // command is requested while device is not opened.
#define SM_F_USEDBYOTHER 0x8000002B // usb is temporarily blocked by other.
#define SM_F_SOCKETCREATE 0x8000002C // socket creation failed.
#define SM_F_SOCKETCONNECT 0x8000002D // socket connection failed.
#define SM_F_SSLINIT 0x8000002E // SSL initialization failed.
#define SM_F_SSLCREATE 0x8000002F // SSL creation failed.
#define SM_F_SSLCONNECT 0x80000030 // SSL connection is failed.
#define SM_F_RESERVED 0x80000031 // host is already reserved status.

28

#define SM_F_INVALIDSOCKET 0x80000032 // socket fd is invalid.
#define SM_F_LESSSENDED 0x80000033 // packet is sended less than requested.
#define SM_F_LESSRECVED 0x80000034 // packet is received less than requested
#define SM_F_SOCKETERROR 0x80000035 // socket error occured.
#define SM_F_INVALIDPACKET 0x80000036 // packet is not valid.
#define SM_F_PACKETSEQDIFFER 0x80000037 // received packet sequence/id is not equal
#define SM_F_PACKETFLAGNOREPLY 0x80000038 // reply flag is not setted on received packet.
#define SM_F_PACKETFLAGHEADER 0x80000039 // sent packet header is incorrect.
#define SM_F_PACKETFLAGARGUMENT 0x8000003A // argument is not valid on sent packet.
#define SM_F_PACKETFLAGEXE 0x8000003B // execution error flag is setted.
#define SM_F_PACKETFLAGBADCMD 0x8000003C // bad command flag is setted.
#define SM_F_PACKETFLAGINIT 0x8000003D //
#define SM_F_PACKETFLAGHANDLE 0x8000003E // invalid handle is given.
#define SM_F_FILEOPEN 0x8000003F // file open failed...
#define SM_F_FILEREAD 0x80000040 // read from fale is failed.
#define SM_F_NOTSUPPORTYET 0x80000041 // not support yet...
#define SM_F_INSUFFICIENTBUF 0x80000042 // insufficient buffer.

#define SM_F_ICESTABLISH 0x80000043 // SCardEstablish failed.
#define SM_F_ICLISTREADER 0x80000044 // SCardListReaders failed.
#define SM_F_ICCONNECT 0x80000045 // SCardConnect failed.
#define SM_F_ICGETSTATUS 0x80000046 // SCardStatus failed.
#define SM_F_ICDISCONNECT 0x80000047 // SCardDisconenct failed.
#define SM_F_ICRELEASE 0x80000048 // SCardReleaseContext failed.

#define SM_F_INVALIDNAME 0x80000200 // invalid or not support barcode name.
#define SM_F_OBJECTNOTFOUND 0x80000203 // object is not exist.
#define SM_F_SUBDLLLOADFAILED 0x80000204 // sub-dll load failed...
#define SM_F_CONFIGFILEFAILED 0x80000205 // configuration file load/save failed...
#define SM_F_OVERHEATED 0x80000206 // thermal-head is overheated...
#define SM_F_NOPRINTHREAD 0x80000207 // no thermal-head
#define SM_F_LOWERVERSION 0x80000208 //
#define SM_F_HIGHERVERSION 0x80000209 //
#define SM_F_OLDSERVER 0x8000020A //
#define SM_F_VERSIONNOTMATCH 0x8000020B // version mismatched.
#define SM_F_CHANGEPASSWORD 0x8000020C // changing root/user password is failed.
#define SM_F_UNLOCK 0x8000020D // unlock is failed.
#define SM_F_LOCK 0x8000020E // lock is failed.
#define SM_F_FILESIZEZERO 0x80000220 // required file size is 0
#define SM_F_DEPRECATED 0x80000221 // function is deprecated.
#define SM_F_SERIALNORESPONSE 0x80000222 // not responding for serial command.

#define SM_F_NETAUTHFAIL 0x80000300 // Network Authentification failed.

#define SM_F_NETREBOOTERROR 0x80000301 // Network Reboot command failed.

#define SM_F_NETRELOADERROR 0x80000302 // Network Reload command failed.

#define SM_F_NETRESETERROR 0x80000303 // Network Reset command failed.

#define SM_F_NETUPGRADEERROR 0x80000304 // Network upgrade command failed.

#define SM_F_NETGETSYSCFGERROR 0x80000305 // Network Get System Config command failed.

#define SM_F_NETSETSYSCFGERROR 0x80000306 // Network Set System Config command failed.

#define SM_F_NETGETSVCCFGERROR 0x80000307 // Network Get Service Config command failed.

#define SM_F_NETSETSVCCFGERROR 0x80000308 // Network Set Service Config command failed.

#define SM_F_NETLISTUSERERROR 0x80000309 // Network List User command failed.

#define SM_F_NETADDUSERERROR 0x8000030A // Network Add User command failed.

#define SM_F_NETDELUSERERROR 0x8000030B // Network Delete User command failed.

#define SM_F_NETPASSWDUSERERROR 0x8000030C // Network Change User Password command failed.

3.2 SmartComm_GetDeviceList

SmartComm_GetDeviceList is a function which collects the SMART Printer lists. Using this function,

printers’ information is collected and users can input the information to use other functions such as

29

SmartComm_OpenDevice and SmartDCL_OpenDevice.

SmartComm_GetDeviceList is for SDK 1 only. To use all functions of SDK 2, please use

SmartComm_GetDeviceList2.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition
int SmartComm_GetDeviceList(

DEVICEINFO* pDevList

);

Parameters

pDevList

[out] A pointer of DEVICEINFO structure which is for the list of available printers. If the function

is operated successfully, the number of SMART Printers is delivered at “nID” and printers’

IDs are input at “ID” array.

#define PRINTER_ID_MAX 32

typedef struct {

 int nID;

 WCHAR ID[PRINTER_ID_MAX][16];

} DEVICEINFO;

Return Values
If the function is operated successfully, SM_SUCCESS will be returned.

Remarks
It collects printer lists from both USB and network. It’ll take a few seconds to collect printer list on

the network.

Printer ID’s factory default setting is “SMART”. So if you want to use several SMART Printers on

same PC or same network, you have to set different Printer ID using CardPrinterConfig Utility. For the

setting method, refer to the SMART user manual.

3.3 SmartComm_GetDeviceList2

SmartComm_GetDeviceList2 is a function which collects the SMART Printer lists. Using this function,

30

printers’ information is collected and users can input the information to use other functions such as

SmartComm_OpenDevice2 and SmartDCL_OpenDevice2.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition
int SmartComm_GetDeviceList2(

SMART_PRINTER_LIST* pDevList

);

Parameters

pDevList

[out] A pointer for SMART_PRINTER_LIST structure which is for the list of available printers.

SMART_PRINTER_LIST is defined as follows and if the function is operated successfully,

the number of SMART Printers is delivered at “n” and printers’ information are input at

“item”.

#define MAX_SMART_PRINTER 32

typedef struct {

 WCHAR name[128]; // printer name

 WCHAR id[64]; // printer ID

 WCHAR dev[64]; // device connection

 WCHAR desc[256]; // description

 int pid; // USB product ID

} SMART_PRINTER_ITEM;

typedef struct {

 int n;

 SMART_PRINTER_ITEM item[MAX_SMART_PRINTER];

} SMART_PRINTER_LIST;

Return Values
If the function is operated successfully, SM_SUCCESS will be returned.

Remarks
It collects printer lists from both USB and network. It’ll take a few seconds to collect printer list on

the network.

Printer ID’s factory default setting is “SMART”. So if you want to use several SMART Printers on

same PC or same network, you have to set different Printer ID using CardPrinterConfig Utility. For the

setting method, refer to the SMART user manual.

31

3.4 SmartComm_GetDeviceInfo

SmartComm_GetDeviceInfo is used to get detail information of a printer.

SmartComm_GetDeviceInfo is for SDK 1 only. To use all functions of SDK 2, please use

SmartComm_GetDeviceInfo2.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition
int SmartComm_GetDeviceInfo(

WCHAR* szDevice,

SMART_LOOKUP_ITEM* pDevInfo, psmart

);

Parameters

szDevID

[in] A printer ID to get a printer’s information. To get the ID, SmartComm_GetDeviceList or

SmartComm_GetDeviceList2 can be used

pDevInfo

[out] szDevID is SMART_LOOKUP_ITEM structure for printer’s IP and Port information.

typedef struct {

 WCHAR version[64]; // version info.

 WCHAR id[64]; // printer id.

 WCHAR ip[64]; // network ip address.

 int pid; //

 int port; // network port.

 int b_ssl; // whether use of SSL protocol.

 int type; // server type.

} SMART_LOOKUP_ITEM;

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
The printer model can be distinguished by pid. The range of pid is as below.

SMART-50 : 0x3850 ~ 0x386F

SMART-30 : 0x3870 ~ 0x388F

32

SMART-51 : 0x3510 ~ 0x351F

SMART-31 : 0x3310 ~ 0x331F

3.5 SmartComm_GetDeviceInfo2

SmartComm_GetDeviceInfo2 is used to get detail information of a printer.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition
int SmartComm_GetDeviceInfo2(

SMART_PRINTER_INFO* pDevInfo,

WCHAR* szDevice,

int nDevType

);

Parameters
pDevInfo

[out] A pointer of SMART_PRINTER_INFO structure to get a printer’s information.

typedef struct {

 WCHAR port[64]; // usb port

 WCHAR link[256]; // symbolic link of usb port

 int is_bridge; // Network module bridge

} SMART_PRINTER_PORT_USB;

typedef struct {

 WCHAR ver[64]; // version of network protocol

 WCHAR ip[64]; // ip address

 int port; // tcp port

 int is_ssl; // ssl protocol

} SMART_PRINTER_PORT_NET;

typedef struct {

 WCHAR name[128]; // printer name

 WCHAR id[64]; // printer ID

 WCHAR dev[64]; // device connection

 int dev_type; // 1=USB, 2=NET

 int pid; // USB product ID

33

 SMART_PRINTER_PORT_USB usb;

 SMART_PRINTER_PORT_NET net;

} SMART_PRINTER_STANDARD;

typedef struct {

 int is_dual; // dual printer

 WCHAR ic1[64]; // internal contact encoder

 WCHAR ic2[64]; // external contact SIM encoder

 WCHAR rf1[64]; // internal contactless encoder

 WCHAR rf2[64]; // external contactless encoder

} SMART_PRINTER_OPTIONS;

typedef struct {

 SMART_PRINTER_STANDARD std;

 SMART_PRINTER_OPTIONS opt;

} SMART_PRINTER_INFO;

szDevice

[in] Printer’s Description or ID.

This parameter can be brought by SmartComm_GetDeviceList2 function.

nDevType

[in] A parameter for distinguish for szDevice whether it is Printer Description or Printer ID.

#define SMART_OPENDEVICE_BYID 0 // szDevice is Printer ID

#define SMART_OPENDEVICE_BYDESC 1 // szDevice is Printer Description

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
The printer model can be distinguished by pid of SMART_PRINTER_STANDARD. The range of pid

is as below.

SMART-50 : 0x3850 ~ 0x386F

SMART-30 : 0x3870 ~ 0x388F

SMART-51 : 0x3510 ~ 0x351F

SMART-31 : 0x3310 ~ 0x331F

3.6 SmartComm_OpenDevice

SmartComm_OpenDevice is an opening function to initialize and receive a handle of SMART Printer.

Printer ID which is from SmartComm_GetDeviceList or SmartComm_GetDeviceList2 functions, can be

34

used in this function.

SmartComm_OpenDevice is for SDK 1 only. To use all functions of SDK 2, please use

SmartComm_OpenDevice2.

Operation Mode: USB, Network, Driver
Operation Device: SMART-50, 30, 51, 31

Definition
int SmartComm_OpenDevice(

HSMART* pHandle,

WCHAR* szID

);

Parameters

pHandle

[out] A handle for Smart printer. After SmartComm_OpenDevice function this parameter will be

set to non-zero value.

szDevice

[in] Printer’s ID from SmartComm_GetDeviceList function

Return Values

SM_SUCCESS is returned if the function is operated successfully.

Remarks
If a printer is connected to USB, the other process can access the printer but if the printer is

connected to the network, the other process can’t access the printer and can’t open the printer.

 SmartComm_OpenDevice can be operated successfully only if the printer driver is installed on PC.

If the printer driver is not installed and the user tries to open the printer, unexpected errors can occur.

3.7 SmartComm_OpenDevice2

SmartComm_OpenDevice2 is an opening function to initialize and receive a handle to use SMART

Printer. Either printer description or printer ID which those are from SmartComm_GetDeviceList2 function

can be used in this function.

Operation Mode: USB, Network, Driver
Operation Device: SMART-50, 30, 51, 31

35

Definition
int SmartComm_OpenDevice2(

HSMART* pHandle,

WCHAR* szDevice,

int nDevType

);

Parameters

pHandle

[out] A handle for Smart printer. After SmartComm_OpenDevice2 function this parameter will be

set as non-zero value .

szDevice

[in] Printer’s description or ID from SmartComm_GetDeviceList2 function

nDevType

[in] This parameter distinguishs wheter it is printer description or printer’s ID of szDevice

#define SMART_OPENDEVICE_BYID 0 // szDevice is Printer ID

#define SMART_OPENDEVICE_BYDESC 1 // szDevice is Printer Description

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
If a printer is connected to USB, the other process can access the printer but if the printer is

connected to the network, the other process can’t access the printer and can’t open the printer.

 SmartComm_OpenDevice2 can be operated successfully only if the printer driver is installed on

PC. If the printer driver is not installed and the user tries to open the printer, unexpected errors can

occur.

3.8 SmartDCL_OpenDevice

SmartDCL_OpenDevice is a function to initialize and receive the handle to use SMART Printer as DCL

mode. Printer ID from SmartComm_GetDeviceList or SmartComm_GetDeviceList2 can be used in this

function.

SmartDCL_OpenDevice is for SDK 1 only. To use all functions of SDK 2, please use SmartDCL_

OpenDevice2.

36

Operation Mode: USB, Network, DCL
Operation Device: SMART-50, 30, 51, 31

Definition
int SmartDCL_OpenDevice(

HSMART* pHandle,

CHAR* szID,

int nOrientation

);

Parameters

pHandle

[out] A handle for Smart printer. After SmartDCL_OpenDevice function this parameter will be set

to non-zero value.

szDevice

[in] Printer’s ID from SmartComm_GetDeviceList function

nOrientation

[in] Orientation of the paper

#define DMORIENT_PORTRAIT 1

#define DMORIENT_LANDSCAPE 2

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
If the printer driver is not installed in PC, SmartDCL_OpenDevice can be used to open printer. If you

use this function, you should use SmartDCL_Print and SmartDCL_CloseDevice instead of

SmartComm_Print and SmartComm_Close.

3.9 SmartDCL_OpenDevice2

SmartDCL_OpenDevice2 is a function to initialize and receive the handle to use SMART Printer as

DCL mode. Either printer description or printer ID those are from SmartComm_GetDeviceList2 function,

can be used in this function.

37

Operation Mode: USB, Network, DCL
Operation Device: SMART-50, 30, 51, 31

Definition
int SmartDCL_OpenDevice2(

HSMART* pHandle,

WCHAR* szDevice,

int nDevType,

int nOrientation

);

Parameters
pHandle

[out] A handle for Smart printer. After SmartDCL_OpenDevice2 function this parameter will be

set to non-zero value.

szDevice

[in] Printer’s description or ID from SmartComm_GetDeviceList2 function

nDevType

[in] This parameter distinguishs printer description and ID of szDevice

#define SMART_OPENDEVICE_BYID 0 // szDevice is Printer ID

#define SMART_OPENDEVICE_BYDESC 1 // szDevice is Printer Description

nOrientation

[in] Orientation of the paper

#define DMORIENT_PORTRAIT 1

#define DMORIENT_LANDSCAPE 2

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
If the printer driver is not installed in PC, SmartDCL_OpenDevice2 can be used to open printer. If

you use this function, you should use SmartDCL_Print and SmartDCL_CloseDevice instead of

SmartComm_Print and SmartComm_Close.

3.10 SmartDCL_OpenDevice3

38

SmartDCL_OpenDevice3 is a function to initialize and receive the handle to use SMART Printer as

DCL mode. If the C class of IP address of the network SMART printer is different from PC or the printer

can’t be searched by SmartComm_GetDevice2, this function can be used.

Operation Mode: USB, Network, DCL
Operation Device: SMART-50, 30, 51, 31

Definition
int SmartDCL_OpenDevice3(

HSMART* pHandle,

WCHAR* szDevice,

int nPort,

BOOL bSSL,

int nOrientation

);

Parameters
pHandle

[out] A handle for Smart printer. After SmartDCL_OpenDevice3 function this parameter will be

set to non-zero value.

szDevice

[in] Printer’s description from SmartComm_GetDeviceList3 function

Format: [SMART : _ip_address_]

nPort

[in] Port of the printer

bSSL

[in] Port of the printer. This parameter distinguishes whether SSL is used or not.

nOrientation

[in] Orientation of the paper

#define DMORIENT_PORTRAIT 1

#define DMORIENT_LANDSCAPE 2

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

39

3.11 SmartComm_CloseDevice

SmartComm_CloseDevice is close command when the use of SMART Printer is finished.

Operation Mode: USB, Network, Driver
Operation Device: SMART-50, 30, 51, 31

Definition
int SmartComm_CloseDevice(

HSMART hHandle

);

Parameters
hHandle

[in] SMART Printer’s handle which is opened.

Return Values
If the value is executed normally, SM_SUCCESS will be returned.

Remarks
The received handle, after the success of SmartComm_OpenDevice function, should be returned

by SmartComm_CloseDevice. Especially in case of using the network, the handle should be returned

as soon as possible that the printer can be used by other users. If the handle isn’t returned, the

assigned memory when calling OpenDevice can’t be returned.

3.12 SmartDCL_CloseDevice

SmarDCL_CloseDevice is the function to close a printer when a user opened the printer using

SmartDCL_OpenDevice.

Operation Mode: USB, Network, DCL
Operation Device: SMART-50, 30, 51, 31

Definition
int SmartDCL_CloseDevice(

HSMART hHandle

40

);

Parameters
hHandle

[in] A printer handle which is created by SmartDCL_OpenDevice function.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
The received handle, after the success of SmartDCL_OpenDevice function, should be returned by

SmartDCL_CloseDevice. Especially in case of using the network, the handle should be returned as

soon as possible that the printer can be used by other users. If the handle isn’t returned, the assigned

memory when calling OpenDevice can’t be returned.

3.13 SmartComm_GetStatus

SMART Printer’s status can be checked by using SmartComm_GetStatus.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition
int SmartComm_GetStatus(

HSMART hHandle,

__int64* piStatus

);

Parameters
hHandle

[in] A handle of the opened printer

piStatus

[out] 64-bit value of the printer’s status.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
SMART-50 and SMART-30 Printer’s statuses are defined in SmartComm2.dll.h.

41

// MOTION-PART

#define SMSC_M_CARDIN 0x0000000000000001 // Under card in

#define SMSC_M_CARDOUT 0x0000000000000002 // Under card card

#define SMSC_M_MOVE_PRINT 0x0000000000000004 // Move to print position

#define SMSC_M_MOVE_PRN2ROT 0x0000000000000008 // Move to roator from printer

#define SMSC_M_MOVE_ROT2PRN 0x0000000000000010 // Moe to pritner from flipper

#define SMSC_M_MOVE_IC 0x0000000000000020 // Move to IC position

#define SMSC_M_MOVE_RF 0x0000000000000040 // Move to contactless IC position

#define SMSC_M_MOVE_MAG 0x0000000000000080 // Move to the magnetic stripe position

#define SMSC_M_THUP 0x0000000000000100 // Under Thermal head up

#define SMSC_M_THDOWN 0x0000000000000200 // Under Thermal head down

#define SMSC_M_ICHUP 0x0000000000000400 // Under IC head(Contactor) up

#define SMSC_M_ICHDOWN 0x0000000000000800 // Under IC head(Contactor) down

#define SMSC_M_PRINT 0x0000000000001000 // Under printing

#define SMSC_M_MAGRW 0x0000000000002000 // Under Mag read/write

#define SMSC_M_SEEKRIBBON 0x0000000000004000 // Under ribbon finding

#define SMSC_M_MOVERIBBON 0x0000000000008000 // Under ribbon moving

#define SMSC_M_ROTATORTOP 0x0000000000010000 // Card front side rotate to upper

#define SMSC_M_ROTATORBOTTOM 0x0000000000020000 // Card front side rotate to down

#define SMSC_S_HOPPERHASCARD 0x0000000000040000 // Card is in hopper

#define SMSC_S_THUP 0x0000000000080000 // Thermal head up state

#define SMSC_S_CARDIN 0x0000000000100000 // Card checking by card in sensor

#define SMSC_S_CARDOUT 0x0000000000200000 // Card checking by card out sensor

#define SMSC_S_ROTATORTOP 0x0000000000400000 // Card front is upside in flipper

#define SMSC_S_EQUIPROTATOR 0x0000000000800000 // Flipper installed

#define SMSC_M_RECVPRINTDATA 0x0000000001000000 // Uner receiving the printer buffer

#define SMSC_S_HASPRINTBUFFER 0x0000000002000000 // Unser saving the printing data buffer

#define SMSC_M_SBSRUNNING 0x0000000004000000 // Under executing SBS command

#define SMSC_S_SBSMODE 0x0000000008000000 // SBS mode state

#define SMSC_S_CASEOPEN 0x0000000010000000 // Case open state

#define SMSC_M_INIT 0x0000000020000000 // Under initialization

#define SMSC_S_TESTMODE 0x0000000080000000 // Under test mode.

// ERROR-PART

#define SMSC_F_CARDIN 0x0000000100000000 // Card in error

#define SMSC_F_MOVETOPRINT 0x0000000200000000 // Card moving error to the printing pos.

#define SMSC_F_CARDOUT 0x0000000400000000 // Card out error

#define SMSC_F_MOVETOMAG 0x0000000800000000 // Card moving error to the mag. pos.

#define SMSC_F_MOVETOIC 0x0000001000000000 // Card moving error to IC position

#define SMSC_F_MOVETORF 0x0000002000000000 // Card moving error to contactless pos.

#define SMSC_F_MOVETOROTATOR 0x0000004000000000 // Fail to move to flipper

#define SMSC_F_MOVEFROMROTATOR 0x0000008000000000 // Fail to move to printer from flipper

#define SMSC_F_THUP 0x0000010000000000 // Thermal head up fail

#define SMSC_F_THDOWN 0x0000020000000000 // Thermal head down fail

#define SMSC_F_ICHUP 0x0000040000000000 // IC head(Contactor) up fail

#define SMSC_F_ICHDOWN 0x0000080000000000 // IC head(Contactor) down fail

#define SMSC_F_ROTATORTOP 0x0000100000000000 // failed to rotate the card facing up

#define SMSC_F_ROTATORBOTTOM 0x0000200000000000 // failed to rotate the card facing down

#define SMSC_F_PRINT 0x0000400000000000 // Fail in printing

42

#define SMSC_F_MAGRW 0x0000800000000000 // Magnetic Read/Write fail

#define SMSC_E_SEEKRIBBON 0x0001000000000000 // Ribbon search error

#define SMSC_E_MOVERIBBON 0x0002000000000000 // Ribbon moving error

#define SMSC_E_NOTH 0x0004000000000000 // Thermal head uninstalled

#define SMSC_E_THOVERHEAT 0x0008000000000000 // Thermal head over heated

#define SMSC_E_EMPTYRIBBON 0x0010000000000000 // No ribbon

#define SMSC_F_DATA 0x0020000000000000 // Printing data error

#define SMSC_F_CARDBACKOUT 0x0040000000000000 // card back out fail...

#define SMSC_F_CARDERASE 0x0080000000000000 // Card data removing fail.

#define SMSC_F_INCORRECT_PW 0x0100000000000000 // Wrong password

#define SMSC_F_MAGREADT1 0x0200000000000000 // Failed to read from Mag. Track 1.

#define SMSC_F_MAGREADT2 0x0400000000000000 // Failed to read from Mag. Track 2.

#define SMSC_F_MAGREADT3 0x0800000000000000 // Failed to read from Mag. Track 3.

#define SMSC_F_LOCKED 0x1000000000000000 // Device is currently locked.

#define SMSC_F_SPOOLFULL 0x2000000000000000 // Printer’s spool is full

#define SMSC_F_SET 0x4000000000000000 // Setsting fail

If printer firmware version is higher than 1.00.60 the defines are changed as below

Printer Firmware version is 1.00.59 or less

#define SMSC_S_THUP 0x0000000000080000 // Thermal head up.

#define SMSC_S_ROTATORTOP 0x0000000000400000 // Card top side in Flipper

Printer Firmware 1.00.60 or more.

#define SMSC_S_CLEANWARNING 0x0000000000080000 // Cleaning Warning.

#define SMSC_S_EQUIPLAMINATOR 0x0000000000400000 // Laminator is equiped.

To check whether the flipper is equipped or not in the printer please look up the flags as below.

Printer Firmware version is 1.00.59 or less

If “SMSC_S_EQUIPROTATOR” flag is activated, Flipper is equipped.
Printer Firmware 1.00.60 or more.

If “SMSC_S_EQUIPROTATOR” or “SMSC_S_EQUIPLAMINATOR” flag is activated, Flipper is equipped.

SMART-51 Printer’s statuses are defined in SmartComm2.dll.h.

// MOTION-PART

#define S51PS_M_CARDIN 0x0000000000000001 // inserting card

#define S51PS_M_CARDMOVE 0x0000000000000002 // moving card

#define S51PS_M_CARDMOVEEXT 0x0000000000000004 // moving card between external

#define S51PS_M_CARDEJECT 0x0000000000000008 // ejecting card

#define S51PS_M_THEADLIFT 0x0000000000000010 // lifting up/down thermal head

#define S51PS_M_ICLIFT 0x0000000000000020 // lifting up/down ic connector

#define S51PS_M_RIBBONSEARCH 0x0000000000000040 // searching ribbon

#define S51PS_M_RIBBONWIND 0x0000000000000080 // winding ribbon

#define S51PS_M_MAGNETIC 0x0000000000000100 // processing magnetic

#define S51PS_M_PRINT 0x0000000000000200 // printing

#define S51PS_M_INIT 0x0000000000000400 // initializing

#define S51PS_S_CONNHOPPER 0x0000000000000800 // hopper connected

43

#define S51PS_S_CONNICENCODEER 0x0000000000001000 // ic encoder connected

#define S51PS_S_CONNMAGNETIC 0x0000000000002000 // magnetic encoder connected

#define S51PS_S_CONNLAMINATOR 0x0000000000004000 // laminator connected

#define S51PS_S_CONNFLIPPER 0x0000000000008000 // flipper connected

#define S51PS_S_FLIPPERTOP 0x0000000000010000 // flipper is top sided

#define S51PS_S_COVEROPENED 0x0000000000020000 // cover is opened

#define S51PS_S_DETECTIN 0x0000000000040000 // detect a card from in sensor

#define S51PS_S_DETECTOUT 0x0000000000080000 // detect a card from out sensor

#define S51PS_S_CARDEMPTY 0x0000000000100000 // card empty

#define S51PS_S_RECVPRINTDATA 0x0000000000200000 // receiving print data

#define S51PS_S_HAVEPRINTDATA 0x0000000000400000 // having print data

#define S51PS_S_NEEDCLEANING 0x0000000004000000 // need cleaning

#define S51PS_S_SWLOCKED 0x0000000008000000 // system locked (sw)

#define S51PS_S_HWLOCKED 0x0000000010000000 // system locked (hw)

#define S51PS_M_SBSCOMMAND 0x0000000020000000 // doing SBS command

#define S51PS_S_SBSMODE 0x0000000040000000 // under SBS mode

#define S51PS_S_TESTMODE 0x0000000080000000 // test mode

// ERROR-PART

#define S51PS_F_CARDIN 0x0000000100000000 // failed to insert card

#define S51PS_F_CARDMOVE 0x0000000200000000 // failed to move card

#define S51PS_F_CARDMOVEEXT 0x0000000400000000 // failed to move card between external

#define S51PS_F_CARDEJECT 0x0000000800000000 // failed to eject card

#define S51PS_F_THEADLIFT 0x0000001000000000 // failed to lift up/down thermal head

#define S51PS_F_ICLIFT 0x0000002000000000 // failed to lift up/down ic connector

#define S51PS_F_RIBBONSEARCH 0x0000004000000000 // failed to search ribbon

#define S51PS_F_RIBBONWIND 0x0000008000000000 // failed to wind ribbon

#define S51PS_F_MAGNETIC 0x0000010000000000 // failed to read/write magnetic

#define S51PS_F_READMAGT1 0x0000020000000000 // failed to read magnetic track 1

#define S51PS_F_READMAGT2 0x0000040000000000 // failed to read magnetic track 2

#define S51PS_F_READMAGT3 0x0000080000000000 // failed to read magnetic track 3

#define S51PS_F_PRINT 0x0000100000000000 // error from printing

#define S51PS_E_INIT 0x0000200000000000 // error from initializing

#define S51PS_E_CONNEXT 0x0000400000000000 // device connection error –connect failed

#define S51PS_E_CONNLAMINATOR 0x0000800000000000 // device connection error -laminator

#define S51PS_E_CONNFLIPPER 0x0001000000000000 // device connection error -flipper

#define S51PS_E_RIBBON0 0x0020000000000000 // ribbon remain 0

#define S51PS_E_NORIBBON 0x0040000000000000 // no ribbon

#define S51PS_E_NOTHEAD 0x0080000000000000 // no thermal head

#define S51PS_E_OVERHEAT 0x0100000000000000 // thermal head overheat

#define S51PS_F_INVALIDPRINTDATA 0x0200000000000000 // invalid printing data format

#define S51PS_F_INVALIDPASSWORD 0x0400000000000000 // invalid password

#define S51PS_F_SET 0x4000000000000000 // failed to set

#define S51PS_F_SPOOLFULL 0x8000000000000000 // fulled spool pool

44

3.14 SmartComm_GetRibbonType

SmartComm_GetRibbonType is for checking ribbon type installed in SMART Printer.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_GetRibbonType(

HSMART hHandle,

int* pnRibbonType

);

Parameters
hHandle

[in] A handle of SMART Printer

pnRibbonType

[out] Ribbon type which is installed in Printer

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
SMART Printer’s ribbons have RFID tag so the ribbon type will be recognized automatically.

Ribbons types are defined in SmartComm2.dll.h.

#define SMART_RIBBON_YMCKO 0

#define SMART_RIBBON_YMCKOK 1

#define SMART_RIBBON_hYMCKO 2

#define SMART_RIBBON_KO 3

#define SMART_RIBBON_K 4

#define SMART_RIBBON_BO 5

#define SMART_RIBBON_B 6

#define SMART_RIBBON_BYMCKO 7

#define SMART_RIBBON_YMCKFO 8

#define SMART_RIBBON_REWRITABLE 9

#define SMART_RIBBON_hYMCKOKO 11

#define SMART_RIBBON_YMCKOKR 12

SMART Rewritable Printer directly heat on the surface of the rewritable card so it does not use

ribbon. However, the function takes it as using SMART_RIBBON_REWIRTABLE ribbon.

45

3.15 SmartComm_GetRibbonRemain

SmartComm_GetRibbonRemain is for the checking remained length of ribbon.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_GetRibbonRemain(

HSMART hHandle,

int* pnRibbonRemain

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

pnRibbonRemain

[out] Ribbon’s remains installed in Printer.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
In SMART Printer, ribbon’s remains can be managed by RFID tag system. If the ribbon’s remains

are not enough, it can be alarmed and if there are no available remains, change notice can be

indicated

3.16 SmartComm_GetRibbonInfo

SmartComm_GetRibbonInfo is for the retrieving information of ribbon.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

46

Definition
 int SmartComm_GetRibbonInfo(

HSMART hHandle,

int* pnRibbonType,

int* pnRibbonMax,

int* pnRibbonRemain,

int* pnRibbonGrade

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

pnRibbonType

[out] A pointer of ribbon type in SMART Printer. It can be NULL.

pnRibbonMax

[out] A pointer of a max of ribbon in SMART Printer. It can be NULL.

pnRibbonRemain

[out] A pointer of the remain of ribbon in SMART Printer. It can be NULL.

pnRibbonGrade

[out] A pointer of the grade of ribbon in SMART Printer. It can be NULL.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.17 SmartComm_ClearStatus

SmartComm_ClearStatus clears error status up when there are errors in SMART Printer.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

47

Definition
int SmartComm_ClearStatus(

HSMART hHandle

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
Before using SMART Printer, this can be used to initialize the printer.

3.18 SmartComm_Reboot

SmartComm_Reboot is for rebooting SMART Printer.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_Reboot(

HSMART hHandle

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
After executing SmartComm_Reboot, the printer will be rebooted. So should return the handle by

executing SmartComm_CloseDevice or SmartDCL_CloseDevice and wait until the printer is booting

and have to reopen. At this moment, when the printer is available using SmartComm_GetDeviceList2,

48

do SmartComm_OpenDevice2 or SmartDCL_OpenDevice2.

3.19 SmartComm_SetLCDText

SmartComm_SetLCDText is for displaying user ’s message to LCD window of SMART Printer.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 51

Definition

int SmartComm_SetLCDText(

HSMART hHandle,

int nType,

int nLine,

WCHAR* szText

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

nType

[in] Indicate the message type to print. Standard SMART Printer use 0.

nLine

[in] Sets the message display location to LCD window.

szText

[in] The content of the message which is display to LCD window.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
2 x 16 characters are used for LCD in SMART Printer. However in special specification, graphic

LCD can be supported. nType is to set the display type of LCD display. LCD type is defined in

SmartComm2.dll.h.

#define LCD_TYPE_CH 0 // character LCD : Big Sized Text (2X16)

49

#define LCD_TYPE_GSMALL 1 // graphic LCD : Small Sized Text (8X21)

#define LCD_TYPE_GBIG 2 // graphic LCD : Big Sized Text (4X16)

3.20 SmartComm_Beep

SmartComm_Beep is a function of alarming sound.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50

Definition

int SmartComm_Beep(

HSMART hHandle,

int nBeep

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

nBeep

[in] Sets how many times sound.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
This function is for the customized model so it cannot be operated in the standard model.

3.21 SmartComm_SBSStart

SmartComm_SBSStart is for setting to SBS (Step-By-Step) mode when SMART Printer is in normal

mode.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

50

Definition

int SmartComm_SBSStart(

HSMART hHandle

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
This SBS mode is to control the operation of SMART Printer per each step. The main difference

between SBS mode and Normal mode is that the printing data through spool is not preceded

automatically but it is preceded by SmartComm_DoPrint command. And to prevent wrong printing, if

receive SmartComm_SBSStart command, the data in spool will be removed. So if you want to

develop the program using SMART Printer SDK, it is recommended to initialize by

SmartComm_SBSStart after SmartComm_OpenDevice.

3.22 SmartComm_SBSEnd

SmartComm_SBSEnd is for converting to normal mode after finish SBS mode.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_SBSEnd(

HSMART hHandle

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

Return Values

51

SM_SUCCESS is returned if the function is operated successfully.

Remarks
If you want to use SMART Printer in SBS mode and close, it is recommended to convert to normal

mode from SBS mode by SmartComm_SBSEnd. If you close without SBS mode finishing, SMART

Printer is in SBS state so the printing data will be not proceeded and save at spool. Up to 3 printing

data can be saved at the spool.

3.23 SmartComm_CardIn

SmartComm_CardIn is for inserting a card to inside of printer from hopper.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_CardIn(

HSMART hHandle

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.24 SmartComm_CardOut

SmartComm_CardOut is for sending a card from inside of printer to stacker.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

52

Definition
int SmartComm_CardOut(

HSMART hHandle

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.25 SmartComm_CardOutBack

SmartComm_CardOutBack is for sending the card from inside of printer to back side of printer.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_CardOutBack(

HSMART hHandle

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
It will operate dual side printer (with Flipper)

53

3.26 SmartComm_CardOutBackAngle

SmartComm_CardOutBackAngle is for setting the angle of the card out to printer back side.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_CardOutBackAngle(

HSMART hHandle,

int angle

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

angle

[out] The angle of Card-Out, Setting value is -127 to 127 °(degree)

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
This function is only available for SMART Printer, the flipper is installed.

3.27 SmartComm_Move

SmartComm_Move is for moving the card to someplace.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51,31

Definition

int SmartComm_Move(

HSMART hHandle,

int pos

);

54

Parameters
hHandle

[in] A handle of SMART Printer opened.

pos

[out] Nominates the card moving position.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
To proceed prinitng, magnetic stripe encoding, contact IC encoding, contactless IC encoding, a card

should be placed each related place. Using SmartComm_Move, you can move the card to the place.

#define CARDPOS_PRINT 0 // Print position

#define CARDPOS_MAGNETIC 1 // Magnetic encoding position

#define CARDPOS_IC 2 // Contact smart card encoding position

#define CARDPOS_TOROT 4 // From main body to flipper

#define CARDPOS_FROMROT 5 // From flipper to main body

#define CARDPOS_RF2 6 // Contactless smart card encoding position

#define CARDPOS_IC2 7 // Contact smart card encoding position

3.28 SmartComm_MoveFromIn

SmartComm_MoveFromIn is for moving a card to the specified place from In-Sensor.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30

Definition

int SmartComm_MoveFromIn(

HSMART hHandle,

int dist

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

55

dist

[out] The range of value is from -127 to +127, and the unit is mm.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.29 SmartComm_MoveFromOut

SmartComm_MoveFromOut is for moving a card to place from Out-Sensor.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30

Definition

int SmartComm_MoveFromOut(

HSMART hHandle,

int dist

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

dist

[out] Distances to move from Out-Sensor. The range of value is from -127 to +127, and the unit

is mm.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.30 SmartComm_MoveFromRotateIn

56

SmartComm_MoveFromRotaterIn is for moving a card to place from flipper In sensor.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30

Definition

int SmartComm_MoveFromRotateIn(

HSMART hHandle,

int dist

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

dist

[out] Distances to move from Out-Sensor. The range of value is from -127 to +127, and the unit

is mm.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
This function is only available for SMART Printer, the flipper is installed.

3.31 SmartComm_MoveSensor
SmartComm_MoveSensor is for moving a card to place from given sensor.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-51, 31

Definition

int SmartComm_MoveSensor(

HSMART hHandle,

int sensor,

int accel,

int dist,

int speed

57

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

sensor

[in] Indicate the basic sensor when moving a card
#define SMART51_SENSOR_NONE 0

#define SMART51_SENSOR_CENTER 1

#define SMART51_SENSOR_REAR 2

#define SMART51_SENSOR_FLIPMOTOR 3

#define SMART51_SENSOR_FLIPCENTER 4

#define SMART51_SENSOR_FLIPREAR 5

#define SMART51_SENSOR_FLIPANGLE 6

Accel

[in] Indicate whether moving accelerated or moving at a constant velocity
#define SMART51_ACCEL_NOTUSE 0

#define SMART51_ACCEL_USE 1

dist

[in] Indicate the basic sensor when moving a card The range of value is from -1,600 to 1,600,

and the unit is 0.1 mm. If the sensor value is SMART51_SENSOR_FLIPANGLE, this value

indicates the angle and the range of value is from -180° to 180°.

speed

[in] Indicate the speed when moving a card. The range of value is from 100 to 300, and the unit

is mm/s.

Return Values

SM_SUCCESS is returned if the function is operated successfully.

Remarks

If the sensor value is SMART51_SENSOR_FLIPMOTOR, SMART51_SENSOR_FLIPCENTER,

SMART51_SENSOR_FLIPREAR or SMART51_SENSOR_FLIPANGLE, it is only available when the

flipper is installed.

58

3.32 SmartComm_MovingScan

SmartComm_MovingScan is for scanning a card to move from flipper In sensor.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30

Definition

int SmartComm_MovingScan(

HSMART hHandle,

WORD dist,

WORD speed,

WORD speed2

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

dist

[in] Distances to move from In-Sensor of Flipper. The range of value is from 0 to 160, and the

unit is mm.

speed

[in] Speeds to move from In-Sensor of Flipper. The range of value is from 100 to 1000, and the

unit is PPS (pulse per second). In this speed value, the resolution of the pulse is 300. The

formula which converts mm/s to PPS is following :

speed = 300 * mm/s / 25.4

speed2

[in] Speeds to move from In-Sensor of Flipper. The range of value is from 100 to 1000, and the

unit is PPS (pulse per second). In this speed value, the resolution of the pulse is 225. The

formula which converts mm/s to PPS is following :

speed = 225 * mm/s / 25.4

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

59

3.33 SmartCommEx_GetPanelDensity

SmartCommEx_GetPanelDensity is for getting a printing density value by ribbon panel.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartCommEx_GetPanelDensity(

HSMART hHandle,

BYTE panel,

int * pdensity

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

panel

[in] The panel value for getting printing density value.

pdensity

[out] The address of buffer for getting printing density.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.34 SmartCommEx_SetPanelDensity

SmartCommEx_SetPanelDensity is for setting a printing density value by ribbon panel.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

60

Definition

int SmartCommEx_SetPanelDensity(

HSMART hHandle,

BYTE panel,

int density,

WCHAR * pw

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

panel

[in] The panel value for getting printing density value.

density

[int] The printing density value.

 The range of density value is different by the panel and its range is following.

 Color Panel : -500 ~ +500

 Black Panel : -1500 ~ +1000

 Overlay Panel : -500 ~ +500

pw

[int] The administrator password for changing density value.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.35 SmartComm_ICHContact

SmartComm_ICHContact is for contacting IC module’s head with IC of the card.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

61

Definition
int SmartComm_ICHContact(

HSMART hHandle

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
SMART Printer supports 2 contact smart card encoders. One is the internal encoder for CR-80 size

card and the other is external encoder using SIM slot on printer’s front side. SmartComm_ICHContact

is to move IC head to contact with IC of the card. In SIM, if it is inserted, it is contacted.

You need to execute SmartComm_ICHContact for physical contact before connect with contact

smart card. And after disconnect with contact smart card, you have to execute SmartComm_

ICHDiscontact to avoid the physical contact.

3.36 SmartComm_ICHDiscontact

SmartComm_ICHDiscontact is for moving IC head to not contact with IC of the card after finished IC

encoding.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_ICHDiscontact(

HSMART hVALUESHandle

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

Return Values

62

SM_SUCCESS is returned if the function is operated successfully.

Remarks
If you use SmartComm_ICHContact to contact with IC of the card, you have to proceed SmartComm_

ICHDiscontact to moving IC head from IC of the card. If not, it will be the reason of card moving problem

or other problem.

3.37 SmartComm_Rotate

SmartComm_Rotate is for rotating a card. If receive SmartComm_Rotate command, the card is moving

to flipper and it will be rotated 180 degrees and return to the inside of the printer.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_Rotate(

HSMART hHandle

);

Parameters

hHandle

 [in] A handle of SMART Printer opened.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
SmartComm_Rotate is for only SMART Printer with flipper option. You can check the flipper option

by call SmartComm_GerStatus and read the status value.

3.38 SmartComm_MagReadAction

SmartComm_MagReadAction is for reading magnetic stripe. If reading is succeeded, you have to

operate SmartComm_MagGetBuffer to bring the data.

63

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_MagReadAction(

HSMART hHandle,

int nTrackID

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

nTrackID

[in] Nominate the reading track.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
SmartComm_MagReadAction is reading the magnetic data for the only nominated track. nTrackID

is possible to read one or more tracks.

#define MAG_T1 1 // ISO Track 1

#define MAG_T2 2 // ISO Track 2

#define MAG_T3 4 // ISO Track 3

#define MAG_JIS 8 // JIS Track

3.39 SmartComm_MagReadAction2

SmartComm_MagReadAction2 is for reading magnetic stripe by normal but also bit mode. If the

reading is succeeded, you have to operate SmartComm_MagGetBuffer to bring the data.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_MagReadAction2(

HSMART hHandle,

int nTrackID,

64

int nOpt

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

nTrackID

[in] Nominates the reading track.

nOpt

[in] Defines the option.

#define MAG_NORMAL 0x00 // Normal mode

#define MAG_BITMODE 0x80 // Bit Mode, OR operation with the nTrackID value

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
SmartComm_MagReadAction2, it is reading the magnetic data for the nominated track. nTrackID is

possible to read one or more tracks.

#define MAG_T1 1 // ISO Track 1

#define MAG_T2 2 // ISO Track 2

#define MAG_T3 4 // ISO Track 3

#define MAG_JIS 8 // JIS Track

n0pt will be given as an option when you read.

When you read normal mode, it uses MAG_NORMAL.

The bit mode is only available on the ISO track.

3.40 SmartComm_MagGetBuffer

SmartComm_MagGetBuffer is for bringing the reading data which is executed in SmartComm_

MagReadAction.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

65

int SmartComm_MagGetBuffer(

HSMART hHandle,

int nTrackID,

BYTE* pOutBuf,

int* pnInOutLen

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

nTrackID

[in] Nominate the reading track.

pOutBuf

[out] Buffer to receive the reading data.

pnInOutLen

[in/out] Sets the buffer’s size and return the number of reading data.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
Only one track information can be read in SmartComm_MagGetBuffer. To read more track

information, have to use SmartComm_MagGetAllBuffer. If you read by bit mode, it will bring HexString

data.

If JIS track is read, character array of WCHAR type will be returned at pOutBuf.

3.41 SmartComm_MagGetAllBuffer

SmartComm_MagGetAllBuffer is for bring all the reading data which is got by SmartComm_

MagReadAction.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

66

int SmartComm_MagGetAllBuffer(

HSMART hHandle,

BOOL bGetT1,

BYTE* pBufT1,

int* pnT1Len,

BOOL bGetT2,

BYTE* pBufT2,

int* pnT2Len,

BOOL bGetT3,

BYTE* pBufT3,

int* pnT3Len

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

bGetT1

[in] A parameter for reading Track 1. If it is TRUE, read.

pBufT1

[out] Track 1 Buffer to input data.

pnT1Len

[in/out] A parameter for a buffer size of Track1 and it is returned the number of reading data.

bGetT2

[in] A parameter for reading Track 2. If it is TRUE, read.

pBufT2

[out] Track 2 Buffer to input data.

pnT2Len

[in/out] A parameter for a buffer size of Track2 and it is returned the number of reading data.

bGetT3

[in] A parameter for reading Track 3. If it is TRUE, read.

pBufT3

[out] Track 3 Buffer to input data.

67

pnT3Len

[in/out] A parameter for a buffer size of Track3 and it is returned the number of reading data.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
If you read in BitMode, it will bring Hex String data.

3.42 SmartComm_MagConfig

SmartComm_MagConfig is for setting the configuration values of magnetic stripe encoding such as

format or density. Use this function before writing or reading Magnetic stripe.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-51, 31

Definition
 int SmartComm_MagConfig(

HSMART hHandle,

MAGCONFIG* pMagCfg

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

pMagCfg

[in] MAGCONFIG is the structure which defines the configuration value of magnetic encoding.

MAGCONFIG is explained as below.

typedef struct {

 int ver; // structure version (= MAGCONFIG_VER_1)

 struct {

 int ballys_count; // 0 ~ 2 : 0(not use ballys)

 int backward; // forward(normal) backward(reverse)

 int format; // data format

 int bpi; // write bpi (bits per inch)

68

 } t1;

 struct {

 int ballys_count; // 0 ~ 2 : 0(not use ballys)

 int backward; // forward(normal) backward(reverse)

 int format; // data format

 int bpi; // write bpi (bits per inch)

 } t2;

 struct {

 int ballys_count; // 0 ~ 2 : 0(not use ballys)

 int backward; // forward(normal) backward(reverse)

 int format; // data format

 int bpi; // write bpi (bits per inch)

 } t3;

 struct {

 int ballys_count; // 0 ~ 2 : 0(not use ballys)

 int backward; // forward(normal) backward(reverse)

 int format; // data format

 int bpi; // write bpi (bits per inch)

 } jis;

} MAGCONFIG;

 ver

 Indicates the version of structure

 #define MAGCFG_VER_1 1

ballys_count

 The retry count in case of BALLYS mode

 #define MAGCFG_BALLYS_NOTUSE 0

 #define MAGCFG_BALLYS_1 1

 #define MAGCFG_BALLYS_2 2

backward

The direction of writing

 #define MAGCFG_FORWARD 0

 #define MAGCFG_BACKWARD 1

format

 The format on each track

 #define MAGCFG_FORMAT_IATA 0 // use on ISO 1 track generally

 #define MAGCFG_FORMAT_ABA 1 // use on ISO 2 track generally

 #define MAGCFG_FORMAT_MINS 2 // use on ISO 3 track generally .

 #define MAGCFG_FORMAT_JIS2 3 // use on JIS II track generally

 #define MAGCFG_FORMAT_BITS 4 // Bit Mode

bpi

 Defines the density of writing

69

 The value of ISO Track 1, 3 and JIS is 210, The value of ISO Track 2 is 75

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.43 SmartComm_MagWriteAction

SmartComm_MagWriteAction is for writing buffered data to the magnetic stripe. Before doing

SmartComm_MagWriteAction, you have to proceed SmartComm_MagSetBuffer or SmartComm_

MagSetAllBuffer to buffer the data.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_MagWriteAction(

HSMART hHandle,

int nTrackID,

BOOL bHighCo

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

nTrackID

[in] Nominates the writing track.

bHighCo

[in] Decides to encode to HiCo magnetic stripe. If it is TRUE, HiCo is used and FALSE is LoCo.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
LoCo magnetic stripe was used usually but nowadays, the damage can be happened frequently by

70

a magnet so it becomes changing to HiCo. SMART Printer supports HiCo / LoCo and it can be

encoded by software. Please be sure that which type or magnetics you are going to use.

3.44 SmartComm_MagWriteAction2

SmartComm_MagWriteAction2 is for writing buffered data to the magnetic stripe by Bit Mode.

Before doing SmartComm_MagWriteAction, you have to proceed SmartComm_MagSetBuffer or

SmartComm_MagSetAllBuffer to buffer the data.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_MagWriteAction2(

HSMART hHandle,

int nTrackID,

int nOpt,

int nT1BPI,

int nT2BPI,

int nT3BPI

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

nTrackID

[in] Nominates writing track.

nOpt

[in] Decides encoding options of magnetic stripe.

#define MAG_LOWCO 0x00 // Low-co write

#define MAG_HIGHCO 0x10 // High-co write

#define MAG_SUPERCO 0x20 // Super-co write, SMART-51,31 is used

#define MAG_USERCO 0x30 // user defined coercivity to write

#define MAG_BITMODE 0x80 // bit mode write, OR operation with the above value

nT1BPI

[in] Bit Mode recording, BPI will be used in ISO Track 1, if it is not Bit Mode, it will be ignored.

71

nT2BPI

[in] Bit Mode recording, BPI will be used in ISO Track 2, if it is not Bit Mode, it will be ignored.

nT3BPI

[in] Bit Mode recording, BPI will be used in ISO Track 3, if it is not Bit Mode, it will be ignored.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
LoCo magnetic stripe was used usually but nowadays, the damage can be happened frequently by

a magnet so it becomes changing to HiCo. SMART Printer supports HiCo / LoCo and it can be

encoded by software. Please be sure that which type or magnetics you are going to use. If you want

to record data in Bit Mode, you can use MAG_BITMODE option at nOpt. You have to set BPI value for

each track to Bit Mode Recording. You can acknowledge BPI value by

SmartComm_MagBitModeGetBPI.

3.45 SmartComm_MagBitModeGetBPI

If you record with bit mode, SmartComm_MagBitModeGetBPI will bring accurate BPI.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_MagBitModeGetBPI(

int nBPI,

int* pNewBPI

);

Parameters

nBPI

[in] BPI value.

pNewBPI

[out] nBPI value will be brought the accurate value for use.

72

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
If you record bit mode, BPI value will be used between 40 ~210. BPI value decides maximum data

length. You can use SmartComm_MagBitModeGetMaxSize to know the Maximum bit data length.

3.46 SmartComm_MagBitModeGetMaxSize

If you record by bit mode, SmartComm_MagBitModeGetMaxSize will bring the maximum data length

from BPI.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_MagBitModeGetMaxSize(

int nBPI,

int* pnMaxSize

);

Parameters

nBPI

[in] BPI value.

pnMaxSize

[out] when you use the nBPI, it will bring maximum bit data length.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.47 SmartComm_MagSetBuffer

SmartComm_MagSetBuffer is for tranfering data which is used in SmartComm_MagWriteAction or

SmartComm_MagWriteAction2.

73

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_MagSetBuffer(

HSMART hHandle,

int nTrackID,

BYTE* pInBuf,

int nLen

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

nTrackID

[in] Nominates the writing track.

pInBuf

[in] Buffer for sending data.

nLen

[in] Display the length to write data.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
SmartComm_MagSetBuffer is for sending the data to one track buffer. So if you want to use more

tracks, use SmartComm_MagSetAllBuffer. When you record in Bit Mode, you arrange the bit value by

Hex String without space.

When you try to write on JIS track, use WCHAR type for pInBuf.

3.48 SmartComm_MagSetAllBuffer

SmartComm_MagSetAllBuffer is for sending all track’s data which is encoded SmartComm_

MagWriteAction.

74

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_MagSetAllBuffer(

HSMART hHandle,

BOOL bSetsT1,

BYTE* pBufT1,

int nT1Len,

BOOL bSetsT2,

BYTE* pBufT2,

int nT2Len,

BOOL bSetsT3,

BYTE* pBufT3,

int nT3Len

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

bSetsT1

[in] Decides to send Track1 buffer. If it is TRUE, send.

pBufT1

[in] Track 1 Buffer to send the data.

pnT1Len

[in] Data length of track 1 which is transferred.

bSetsT2

[in] Decides to send Track2 buffer. If it is TRUE, send.

pBufT2

[in] Track 2 Buffer to send the data.

pnT2Len

[in] Data length of track 2 which is transferred.

75

bSetsT3

[in] Decides to send Track3 buffer. If it is TRUE, send.

pBufT3

[in] Track 3 Buffer to send the data.

pnT3Len

[in] Data length of track 3 which is transferred.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
When you record in Bit Mode, arrange the bit value by Hex String without space.

3.49 SmartComm_MagGetCryptoBuffer

SmartComm_MagGetCryptoBuffer is for bringing the data which is read at SmartComm_

MagReadAction by using the AES128 encrypted algorithm.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_MagGetCryptoBuffer(

HSMART hHandle,

int nTrackID,

BYTE* pOutBuf,

int* pnInOutLen,

char* pKey

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

nTrackID

[in] Nominates reading track.

76

pOutBuf

[out] Buffer to input the reading data.

pnInOutLen

[in/out] Sets buffer size and return the number of reading data.

pKey

[in] Nominates encryption key.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
Only one track information can be read by SmartComm_MagGetCryptoBuffer. To read more track

information, use SmartComm_MagGetAllCryptoBuffer. In case pKey is used and it’s shorter than 16

bytes.

3.50 SmartComm_MagGetAllCryptoBuffer

SmartComm_MagGetAllCryptoBuffer is for bring all the encrypted track data which is read at

SmartComm_MagReadAction by using AES128.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_MagGetAllCryptoBuffer(

HSMART hHandle,

BOOL bGetT1,

BYTE* pBufT1,

int* pnT1Len,

BOOL bGetT2,

BYTE* pBufT2,

int* pnT2Len,

BOOL bGetT3,

BYTE* pBufT3,

int* pnT3Len,

77

char* pKey

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

bGetT1

[in] Decides whether read the Track1 buffer. If it is TRUE, read.

pBufT1

[out] Track 1 Buffer to input data.

pnT1Len

[in/out] Buffer size of Track1 and return the number of the reading data size.

bGetT2

[in] Decides whether read the Track2 buffer. If it is TRUE, read.

pBufT2

[out] Track 2 Buffer to input data.

pnT2Len

[in/out] Buffer size of Track2 and return the number of the reading data size.

bGetT3

[in] Decides whether read the Track3 buffer. If it is TRUE, read.

pBufT3

[out] Track 3 Buffer to input data.

pnT3Len

[in/out] Buffer size of Track3 and return the number of the reading data size.

pKey

[in] Nominates encryption key.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

78

Remarks
If pKey is lower than 16 bytes, NULL will be recorded after the data and if bigger, only use 16 bytes.

3.51 SmartComm_MagSetCryptoBuffer

SmartComm_MagSetCryptoBuffer is for sending encryped(AES128) data which is used at

SmartComm_MagWriteAction

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_MagSetCryptoBuffer(

HSMART hHandle,

int nTrackID,

BYTE* pInBuf,

int nInLen,

char* pKey

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

nTrackID

[in] Nominates writing track.

pInBuf

[in] Buffer for writing data.

nLen

[in] Displays the number of writing data.

pKey

[in] Nominates encryption key.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

79

Remarks
The data is transfer to only one track buffer at SmartComm_MagSetCryptoBuffer. If you want to use

more tracks at the same time, use SmartComm_MagSetAllCryptoBuffer.

If pKey is smaller than 16 byte, NULL will be recorded and use it as a code key. And if it is bigger,

only use 16 bytes.

3.52 SmartComm_MagSetAllCryptoBuffer

SmartComm_MagSetAllCryptoBuffer is for tranferring the encrypted(AES128) data which will be

encoded at SmartComm_MagWriteAction.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_MagSetAllCryptoBuffer(

HSMART hHandle,

BOOL bSetsT1,

BYTE* pBufT1,

int nT1Len,

BOOL bSetsT2,

BYTE* pBufT2,

int nT2Len,

BOOL bSetsT3,

BYTE* pBufT3,

int nT3Len,

char* pKey

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

bSetsT1

[in] Decides whether send Track1 buffer. If it is TRUE, send.

pBufT1

80

[in] Track 1 Buffer to send the data.

pnT1Len

[in] Data length of track 1.

bSetsT2

[in] Decides whether send Track2 buffer. If it is TRUE, send.

pBufT2

[in] Track 2 Buffer to send the data.

pnT2Len

[in] Data length of track 2.

bSetsT3

[in] Decides whether send Track3 buffer. If it is TRUE, send.

pBufT3

[in] Track 3 Buffer to send the data.

pnT3Len

[in] Data length of track 3.

pKey

[in] Nominate encryption key.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
If pKey is shorter than 16 byte, NULL will be recorded after the data. If the bigger, it uses only 16

bytes as encryption key.

3.53 SmartComm_OpenDocument

SmartComm_OpenDocument is for printing CSD file which is made in Smart Design program provided.

Operation Mode: USB, Network, Driver, DCL

81

Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_OpenDocument(

HSMART hHandle,

const WCHAR* szCSDName

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

szCSDName

[in] The name of CSD file

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
Smart Design has not only the function of the designing card but also has the function of

synchronizing field s which is connected with DB (Database). So to set fields,

SmartComm_OpenDocument is needed.

In DCL mode, if a CSD file is opened by SmartComm_OpenDocument or SmartComm_DrawXXX,

SMART_SURFACE DC data which is modified by the user will be ignored.

3.54 SmartComm_CloseDocument

SmartComm_CloseDocument is for closing a CSD file.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_CloseDocument(

HSMART hHandle

);

Parameters

82

hHandle

[in] A handle of SMART Printer opened.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.55 SmartComm_GetFieldCount

SmartComm_GetFieldCount is for checking the field number from CSD file which is opened by

SmartComm_OpenDocument.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_GetFieldCount(

HSMART hHandle,

int* pnCount

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

pnCount

[out] Returns the field number which is defined in CSD file.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.56 SmartComm_GetFieldName

83

SmartComm_GetFieldName is for bring the nominated field from CSD file.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_GetFieldName(

HSMART hHandle,

int idx,

WCHAR* szName,

DWORD dwBufLen

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

idx

[in] Field name’s index in CSD

szName

[out] Buffer which the nominated field’s name will be returned in.

dwBufLen

[in] Buffer size for the field name.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.57 SmartComm_GetFieldValue

SmartComm_GetFieldValue is for bring the nominated field value from CSD file.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

84

Definition
int SmartComm_GetFieldValue(

HSMART hHandle,

const WCHAR* szName,

WCHAR* szValue

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

szName

[in] A field name.

szValue

[out] Buffer for the name of the field.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.58 SmartComm_SetFieldValue

SmartComm_SetFieldValue is for nominating the field value in CSD file.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_SetFieldValue(

HSMART hHandle,

const WCHAR* szName,

const WCHAR* szValue

);

Parameters

hHandle

85

[in] A handle of SMART Printer opened.

szName

[in] Field’s name which is to be set.

szValue

[in] Setting value for the name field.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.59 SmartComm_GetPrinterSettings

SmartComm_GetPrinterSetsting is for bringing the printing setup value of SMART Printer. The printing

setup value is including all value which can be changed in the printer properties of Windows control board.

Operation Mode: USB, Network, Driver
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_GetPrinterSetstings(

HSMART hHandle,

CHASM_DEVMODE* pDm

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

pDM

[out] A pointer for SMART Printer’s printing properties.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

86

CHASM_DEVMODE is the structure which defines SMART printer’s properties. CHASM_

DEVMODE is explained at SmartComm2.dll.h. For each detailed explanation, please, refer to the

device driver manual.

3.60 SmartComm_GetPrinterSettings2

SmartComm_GetPrinterSetsting2 is for bringing the printing setup value of SMART Printer. The printing

setup value is including all value which can be changed in the printer properties of Windows control board.

Operation Mode: USB, Network, Driver
Operation Device: SMART-50, 30, 51, 31

Definition
 int SmartComm_GetPrinterSettings2(

HSMART hHandle,

void* pDm,

int* plen

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

pDM

[out] A pointer for SMART Printer’s printing properties.

CHASM_DEVMODE structure is used in the SMART-50, 30 and SMART51_DEVMODE

structure is used in the SMART-51. The size of structure for the current printer is returned

to plen if this value is NULL.

plen

[in] the size of pDM structure

[out] The size of structure for the current printer is returned if this value is NULL.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

87

CHASM_DEVMODE is the structure which defines SMART-50, 30 printer’s properties.

SMART51_DEVMODE is the structure which defines SMART-51 printer’s properties. If this

CHASM_DEVMODE and SMART51_DEVMODE are explained at SmartComm2.dll.h. For each

detailed explanation, please, refer to the device driver manual.

3.61 SmartComm_SetPrinterSettings

SmartComm_SetPrinterSetsting is for setting the printer setup value. The printing setup value is

including all value which can be changed in the printer’s properties of Windows control board.

Operation Mode: USB, Network, Driver
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_SetPrinterSetstings(

HSMART hHandle,

CHASM_DEVMODE* pDm

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

pDM

[in] A pointer to the printing properties of SMART Printer.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.62 SmartComm_SetPrinterSettings2

SmartComm_SetPrinterSetsting2 is for setting the printer setup value. The printing setup value is

including all value which can be changed in the printer’s properties of Windows control board.

88

Operation Mode: USB, Network, Driver
Operation Device: SMART-50, 30, 51, 31

Definition
 int SmartComm_SetPrinterSettings2(

HSMART hHandle,

void* pDm,

int len

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

pDM

[in] A pointer for the printing properties of SMART Printer.

CHASM_DEVMODE structure is used in the SMART-50, 30 and SMART51_DEVMODE

structure is used in the SMART-51. The size of structure for the current printer is returned

to plen if this value is NULL.

len

[in] the size of pDM structure

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.63 SmartComm_DrawImage

SmartComm_DrawImage is for printing an image directly not using the CSD file.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_DrawImage(

HSMART hHandle,

89

BYTE page,

BYTE panel,

int x,

int y,

int cx,

int cy,

WCHAR* szImgPath,

RECT* prcArea

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

page

[in] Sets the side printed. (Front : 0, Back : 1)

panel

[in] Sets the image’s printing section among color, resin, overlay.

x

[in] Image’s X-axis starting position. Left side is 0 and max is 1027.

y

[in] Image’s Y-axis starting position. Up side is 0 and max is 635.

cx

[in] Width of image scaling. 0 is image’s original size.

cy

[in] Height of image scaling. 0 is original size.

szImgPath

[in] Sets the image file’s location.

prcArea

[out] Return value of printed area where the image is drawn on a card.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

90

Remarks
In case of using SmartComm_DrawImage in local, the image file is used directly. but if it is used in

the network, the image file will be transferred and print it. Panel to print is defined in

SmartComm2.dll.h as below.

#define PANELID_COLOR 1 // YMC color panel

#define PANELID_BLACK 2 // Resin black panel

#define PANELID_OVERLAY 4 // Overlay panel

#define PANELID_UV 8 // UV panel

In DCL Mode, if a CSD file is opened by SmartComm_OpenDocument or print data is added by

SmartComm_DrawXXX, the data which is drawn in SMART SURFACE DC will be ignored.

3.64 SmartComm_DrawBitmap

SmartComm_DrawBitmap is the function of drawing images directly not using CSD files and it uses

HBITMAP.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

 int SmartComm_DrawBitmap(

HSMART hHandle,

BYTE page,

BYTE panel,

int x,

int y,

int cx,

int cy,

HBITMAP hbmp,

RECT* prcArea

);

Parameters
hHandle

[in] A handle of an opened printer.

page

91

[in] Sets the printed side. (Front : 0, Back : 1)

panel

[in] Sets the image’s printing type among color, resin, overlay.

x

[in] Image’s X-axis starting position. Left side is 0 and max is 1027.

y

[in] Image’s Y-axis starting position. Up side is 0 and max is 635.

cx

[in] It means the width when the image is scaling. 0 is image’s original size.

cy

[in] It means the height when the image is scaling. 0 is original size.

hbmp

[in] A handle of the bitmap which will be printed

prcArea

[out] Return value of printed area where the image is drawn on a card.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
The print panel is defined in SmartComm2.dll.h as followings.

#define PANELID_COLOR 1 // YMC color panel

#define PANELID_BLACK 2 // Resin black panel

#define PANELID_OVERLAY 4 // Overlay panel

#define PANELID_UV 8 // UV panel

If a CSD file is opened using SmartComm_OpenDocument in DCL mode, or data is added by

SmartComm_DrawXXX function then DC data, which is drawn by the user, in SMART_SURFACE

will be ignored.

3.65 SmartCommEx_DrawImage

92

SmartCommEx_DrawImage is for printing the image directly not using the CSD file.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartCommEx_DrawImage(

HSMART hHandle,

BYTE page,

BYTE panel,

int x,

int y,

int cx,

int cy,

int nScaleMethod,

BYTE nAlign,

WCHAR* szImgPath,

RECT* prcArea

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

page

[in] Sets the printed side. (Front : 0, Back : 1)

panel

[in] Sets the image’s printing type among color, resin, overlay.

x

[in] Image’s X-axis starting position. Left side is 0 and max is 1027.

y

[in] Image’s Y-axis starting position. Up side is 0 and max is 635.

cx

[in] It means the width when the image is scaling. 0 is image’s original size.

93

cy

[in] It means the height when the image is scaling. 0 is original size.

nScaleMethod

[in] Decides to image maximize/minimize in the frame.

#define IMGSCALE_FITHORZ 0x00 // hold the width x vertical rate and range will be

 matched cx.

#define IMGSCALE_FITVERT 0x01 // hold width x vertical rate and height will be

 matched cy.

#define IMGSCALE_FITFRAME 0x02 // without hold the size, range and height will be

 matched cx,cy.

nAlign

[in] Decides the image alignment in the frame.

#define OBJ_ALIGN_LEFT 0x00 // left alignment, match with left side in the frame.

#define OBJ_ALIGN_CENTER 0x01 // center alignment, match with center in the frame.

#define OBJ_ALIGN_RIGHT 0x02 // right alignment, match with right side in the frame.

#define OBJ_ALIGN_TOP 0x00 // top alignment, match with upper side in the frame.

#define OBJ_ALIGN_MIDDLE 0x10 // middle alignment, match with middle in the frame.

#define OBJ_ALIGN_BOTTOM 0x20 // bottom alignment, match with bottom in theframe.

szImgPath

[in] Sets the image file’s location.

prcArea

[out] Return value of printed area where the image is drawn on a card.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
Panel to print is defined in SmartComm2.dll.h.

#define PANELID_COLOR 1 // Color panel which use YMC

#define PANELID_BLACK 2 // Black panel which use Resin

#define PANELID_OVERLAY 4 // Transparency panel which use Overlay

#define PANELID_UV 8 // Transparency panel which use Fluorescent

When a CSD file is opened by SmartComm_OpenDocument under DCL mode or is added some

printing data with SmartComm_DrawXXX, the data in DC of SMART_SURFACE which is drawn by

user will be ignored.

94

3.66 SmartCommEx_DrawBitmap

SmartCommEx_DrawBitmap is for printing images not using the CSD file.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartCommEx_DrawBitmap(

HSMART hHandle,

BYTE page,

BYTE panel,

int x,

int y,

int cx,

int cy,

int nScaleMethod,

BYTE nAlign,

HBITMAP hbmp,

RECT* prcArea

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

page

[in] Decides the text printing side. (Front : 0, Back : 1)

panel

[in] Decides the text printing type among color, resin, overlay.

x

[in] Text’s X-axis starting position. Left side is 0 and max is 1027.

y

[in] Text’s Y axis starting position. Up side is 0 and max is 635.

cx

95

[in] Width when the image is scaling. 0 = original size.

cy

[in] Height when the image is scaling. 0 = original size.

nScaleMethod

[in] Decides to image maximize/minimize in the frame.

#define IMGSCALE_FITHORZ 0x00 // hold width - vertical rates and width is

 matched to cx.

#define IMGSCALE_FITVERT 0x01 // hold width - vertical rates and height is

 matched to cy.

#define IMGSCALE_FITFRAME 0x02 // without hold the size, range and height will be

 matched cx,cy.

nAlign

[in] Decides the image alignment in the frame.

#define OBJ_ALIGN_LEFT 0x00 // left alignment, match with left side in the frame.

#define OBJ_ALIGN_CENTER 0x01 // center alignment, match with center in the frame.

#define OBJ_ALIGN_RIGHT 0x02 // right alignment, match with right side in the frame.

#define OBJ_ALIGN_TOP 0x00 // top alignment, match with upper side in the frame.

#define OBJ_ALIGN_MIDDLE 0x10 // middle alignment, match with middle in the frame.

#define OBJ_ALIGN_BOTTOM 0x20 // bottom alignment, match with bottom in theframe.

hbmp

[in] A handle of BMP.

prcArea

[out] Return value of printed area where the image is drawn on a card.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
Panel to print is defined in SmartComm2.dll.h.

#define PANELID_COLOR 1 // Color panel which use YMC

#define PANELID_BLACK 2 // Black panel which use Resin

#define PANELID_OVERLAY 4 // Transparency panel which use Overlay

#define PANELID_UV 8 // Transparency panel which use Fluorescent

When a CSD file is opened by SmartComm_OpenDocument under DCL mode or is added some

printing data with SmartComm_DrawXXX, the data in DC of SMART_SURFACE which is drawn by

user will be ignored.

96

3.67 SmartComm_DrawText

SmartComm_DrawText is for printing text without using CSD file.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_DrawText(

HSMART hHandle,

BYTE page,

BYTE panel,

int x,

int y,

WCHAR* szFontName,

int nFontSize,

BYTE nFontStyle,

WCHAR* szText,

RECT* prcArea

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

page

[in] Decides the text printing side. (Front : 0, Back : 1)

panel

[in] Decides the text printing type among color, resin, overlay.

x

[in] Text’s X-axis starting position. Left side is 0 and max is 1027.

y

[in] Text’s Y axis starting position. Up side is 0 and max is 635.

97

szFontName

[in] Font name for the text printing.

szFontSize

[in] Font size for the text printing.

nFontStyle

[in] Font type for the text printing.

szText

[in] The text contents to print.

prcArea

[out] Return value of printed area where the image is drawn on a card.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.68 SmartComm_DrawText2

SmartComm_DrawText2 is for printing the text without using CSD file. It has more option than

SmartComm_DrawText.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_DrawText2(

HSMART hHandle,

BYTE page,

BYTE panel,

DRAWTEXT2INFO* pdt2info,

WCHAR* szText

);

Parameters

98

hHandle

[in] A handle of SMART Printer opened.

page

[in] Decides the side printed. (Front : 0, Back : 1)

panel

[in] Decides the printing type among color, resin or overlay.

Pd12into

 [in] Records the specification of Text.

typedef struct {

 int x;

 int y;

 int cx;

 int cy;

 int rotate;

 int align;

 int fontHeight;

 int fontWidth;

 int style;

 COLORREF color;

 int option;

 WCHAR szFaceName[32];

} DRAWTEXT2INFO;

x, y

[in] It is the initial coordinate of the frame that Text will be drawn.

cx, cy

[in] It is width and height of the text frame that will be drawn.

The text will be displayed in the frame only.

rotate

[in] It will set the rotation angle of text.

The value must be one of the “0, 90, 180, 270” align

align

[in] Defines the method of text alignment in the frame.

99

#define OBJ_ALIGN_LEFT 0x00 // width-left alignment.

#define OBJ_ALIGN_CENTER 0x01 // width-cemter alignment.

#define OBJ_ALIGN_RIGHT 0x02 // Width-right alignment.

#define OBJ_ALIGN_JUSTIFY 0x03 // width-justfy alignment.

#define OBJ_ALIGN_TOP 0x00 // length-top alignment.

#define OBJ_ALIGN_MIDDLE 0x10 // length- middle alignment.

#define OBJ_ALIGN_BOTTOM 0x20 // length-bottom alignment.

Width and length alignment will be defined by bit OR operation.

When you set the OBJ_ALIGN_JUSTIFY, all text will be written in the frame. But it

could be lapped.

fontHeight

[in] Defines the text height.

Fontwidth

[in] Defines the text width. When you set the “0”, length will be defined according to

fontHeight.

It can be used for the different length of the text.

style

[in] Defines the text style.

#define FONT_NORMAL 0x00

#define FONT_BOLD 0x01

#define FONT_ITALIC 0x02

#define FONT_UNDERLINE 0x04

Each style can be duplicated by bit OR operation.

color

[in] Defines the text color. If the panel is defined as PANELID_BLACK, it will be printed

with dithering. If the panel is defined as PANELID_COLOR, it will be printed with

defined color.

option

[in] Defines text option.

#define TEXT_NOFIT 0 // drawing normal

#define TEXT_AUTOSIZE 4 // text autosizing for frame.

If you use TEXT_AUTOSIZE, the text will be resized according to the frame.

fontHeight and fontWidth will be ignored.

100

SzFaceName

[in] Defines the text font name.

szText

[in] Contents of text.

Return Values

SM_SUCCESS is returned if the function is operated successfully.

Remarks
In DCL Mode, if a CSD file is opened by SmartComm_OpenDocument or data is added by

SmartComm_DrawXXX, the data which is drawn in SMART SURFACE DC will be ignored.

3.69 SmartComm_DrawRect, 31

SmartComm_DrawRect is for printing rectangle without using CSD files.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51

Definition

int SmartComm_DrawRect(

HSMART hHandle,

BYTE page,

BYTE panel,

int x,

int y,

int cx,

int cy,

COLORREF col,

RECT* prcArea

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

page

101

[in] Decides the side of printing rectangle. (Front : 0, Back : 1)

panel

[in] Decides printing type among color, resin, overlay.

x

[in] Rectangle’s X axis starting position. Left side is 0 and max is 1027.

y

[in] Text’s Y axis starting position. Up side is 0 and max is 635.

cx

[in] Width of the rectangle.

cy

[in] Height of rectangle.

col

[in] Color of the rectangle.

prcArea

[out] Return value where the rectangle is printed on the card.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
In DCL Mode, if a CSD file is opened by SmartComm_OpenDocument or print data is added by

SmartComm_DrawXXX, the data which is drawn in SMART SURFACE DC will be ignored.

3.70 SmartComm_DrawBarcode

SmartComm_DrawBarcode is for printing barcodes without using CSD files.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

102

int SmartComm_DrawBarcode(

HSMART hHandle,

BYTE page,

BYTE panel,

int x,

int y,

int cx,

int cy,

COLORREF col,

RECT* prcArea,

const WCHAR* szName,

int nSize,

const WCHAR* szData,

const WCHAR* szPost

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

page

[in] Decides printing side. (Front : 0, Back : 1)

panel

[in] Decides printing area among color, resin, overlay.

x

[in] Rectangle’s X axis starting position. Left side is 0 and max is 1027.

y

[in] Text’s Y axis starting position. Up side is 0 and max is 635.

cx

[in] Width of the rectangle.

cy

[in] Height of rectangle.

col

[in] Color of the rectangle.

103

prcArea

[out] Return value where the rectangle is printed on the card.

szName

[in] A name of the barcode.

nSize

[in] Size of barcode.

szData

[in] Data of barcode.

szPost

[in] Post data of barcode. If the szName is “MaxiCode” it is postcode data, otherwise using NULL.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
In DCL Mode, if a CSD file is opened by SmartComm_OpenDocument or print data is added by

SmartComm_DrawXXX, the data which is drawn in SMART SURFACE DC will be ignored.

SMART Printer SDK supports both 1D and 2D Barcodes.

// 1D Barcode

"Code39(1:2)"

"Code39(1:3)"

"Code39Ext(1:2)"

"Code39Ext(1:3)"

"EAN8"

"EAN13"

"ITF"

"Code128(A)"

"Code128(B)"

"Code128(C)"

“Codabar”

// 2D Barcode

"PDF 417"

"MicroPDF 417"

"DataMatrix"

"QR Code"

"Maxicode"

3.71 SmartComm_GetBarcodeTypeCount

104

SmartComm_GetBarcodeTypeCount is for checking the number of barcodes those are supported by

DLL.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_GetBarcodeTypeCount(

HSMART hHandle,

int* pnCount

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

pnCount

[out] The number of Barcodes type those are supported through DLL.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.72 SmartComm_GetBarcodeTypeName

SmartComm_GetBarcodeTypeName is for checking the barcode type.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_GetBarcodeTypeName(

HSMART hHandle,

int idx,

WCHAR* szName,

int nBufLen

);

105

Parameters

hHandle

[in] A handle of SMART Printer opened.

idx

[in] Index of a barcode.

szName

[out] Barcode type.

nBufLen

[in] Buffer size of szName.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.73 SmartDCL_GetSurface

SmartDCL_GetSurface is a function to get a pointer of the SMART_SURFACE structure. You can draw

directly on the DC for the panel(color, resin, overlay, fluorescence).

Operation Mode: USB, Network, DCL
Operation Device: SMART-50, 30

Definition

int SmartDCL_GetSurface(

HSMART hHandle,

SMART_SURFACE** ppFrontSurface,

SMART_SURFACE** ppBackSurface

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

106

ppFrontSurface

[out] A pointer of the front side page.

ppBackSurface

[out] A pointer of the back side page

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.74 SmartDCL_GetSurface2

SmartDCL_GetSurface2 is a function to get a pointer of SMART_SURFACE or SMART51_SURFACE

structure. You can draw directly on the DC for the panel(color, resin, overlay, fluorescence).

Operation Mode: USB, Network, DCL
Operation Device: SMART-50, 30, 51, 31

Definition
 int SmartDCL_GetSurface2(

HSMART hHandle,

int page,

void** ppSurface,

int* plen

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

page

[in] A page that is returned.

ppSurface

[out] A pointer that the page indicates

A pointer of the SMART_SURFACE structure is returned in case of the SMART-50, 30 and

A pointer of the SMART51_SURFACE structure is returned in case of the SMART-51, 31.

107

plen

[in] the size of the structure that ppSurface indicates

[out] The size of structure for the current printer is returned if this value is NULL.

A size of the SMART_SURFACE structure is returned in case of the SMART-50, 30 and

A size of the SMART51_SURFACE structure is returned in case of the SMART-51, 31.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.75 SmartComm_Print

SmartComm_Print is for sending the printing data to the spool.

Operation Mode: USB, Network, Driver
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_Print(

HSMART hHandle

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
If SmartComm_Print is executed when SMART Printer is the normal mode, a card is taken inside

and is printed and is sent out as the same as a general program. However, in SBS mode, it will only

be transferred to the spool of SMART Printer. To print in SBS mode, SmartComm_DoPrint command

should be followed.

108

3.76 SmartDCL_Print

SmartDCL_Print is for sending the printing data to the printer.

Operation Mode: USB, Network, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartDCL_Print(

HSMART hHandle,

int nPrintSide

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

nPrintSide

[in] Print side.

#define SMART_PRINTSIDE_FRONT 0 // Print front side only.

#define SMART_PRINTSIDE_BOTH 1 // Print both side.

In case of SMART-51 and SMART-31, use the below values

#define SMART51_PRINTSIDE_FRONT 0 // Print front side only.

#define SMART51_PRINTSIDE_BOTH 2 // Print both side.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
If SmartComm_Print is executed when SMART Printer is the normal mode, a card is taken inside

and is printed and is sent out as the same as a general program. However, in SBS mode, it will only

be transferred to the spool of SMART Printer. To print in SBS mode, SmartComm_DoPrint command

should be followed. If a CSD file is opened by SmartComm_OpenDocument or print data is added by

SmartComm_DrawXXX, the data which is drawn in SMART SURFACE DC will be ignored.

109

3.77 SmartComm_DoPrint

SmartComm_DoPrint is for printing the data in SBS mode.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_DoPrint(

HSMART hHandle

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
SmartComm_DoPrint is used in SBS mode only. If this command is sent, it will be printed on a card

but card out operation will not be done.

3.78 SmartComm_GetPreviewBitmap

SmartComm_GetPreviewBitmap is for bringing bitmap data as DIB type which is created by

SmartComm_OpenDocument or SmartComm_DrawText command.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_GetPreviewBitmap(

HSMART hHandle,

BYTE page,

BITMAPINFO ** const ppbi

);

110

Parameters
hHandle

[in] A handle of SMART Printer opened.

page

[in] Sets a side of a card. (0 : forward, 1 : back)

ppbi

[out] A bitmap data pointer in DIB format.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
ppbi delivers a bitmap pointer from internal of DLL. Do not delete ppbi after using it, because it is

controlled by DLL.

3.79 SmartComm_GetUnitInfo

SmartComm_GetUnitInfo is for getting the object’s data(text, barcode, image) from linked Field.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_GetUnitInfo(

HSMART hHandle,

UNITINFO* pUnit,

int dir

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

pUnit

[out] A pointer of UNITINFO structure to get object’s data.

111

dir

[in] Sets the direction to get data. If it is UNITINFO_FIRST, it searches drawing an object from

the first part of list linked to the field. If it is UNITINFO_NEXT, it searches drawing an

object from the next part where the object was brought the last time.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
// unit type definition

#define UNITTYPE_IMAGE 0x0010

#define UNITTYPE_TEXT 0x0020

#define UNITTYPE_BARCODE 0x0040

// unit info direction

#define UNITINFO_FIRST 0

#define UNITINFO_NEXT 1

// text/image alignment

#define OBJ_ALIGN_LEFT 0x00

#define OBJ_ALIGN_CENTER 0x01

#define OBJ_ALIGN_RIGHT 0x02

#define OBJ_ALIGN_JUSTIFY 0x03

#define OBJ_ALIGN_HNOALIGN 0x04

#define OBJ_ALIGN_TOP 0x00

#define OBJ_ALIGN_MIDDLE 0x10

#define OBJ_ALIGN_BOTTOM 0x20

#define OBJ_ALIGN_VNOALIGN 0x30

#define OBJ_ALIGN_HORZMASK 0x0F

#define OBJ_ALIGN_VERTMASK 0xF0

// font information of Text

typedef struct _tagFontInfo

{

 int size; // font size

 BYTE style; // font style

 COLORREF color; // font color

 WCHAR name[LF_FACESIZE]; // font name

} FontInfo;

// border information

typedef struct _tagBorder

{

 USHORT type; // using PenStyle. PS_SOLID, ...

 USHORT width; // line thickness. mm type.

 COLORREF color; // border color of frame.

112

} Border;

// background information

typedef struct _tagBackGround

{

 BOOL fill; // fill background of frame ?

 COLORREF color; // fill color.

 BYTE transparency; // not use.

} BackGround;

// text object information.

typedef struct

{

 short leftMargin; // left side space of inside of text object

 short topMargin; // top side space

 short rightMargin; // right side space

 short bottomMargin; // bottom side space

 BYTE align; // text horizontal and vertical alignment.

 FontInfo font;

 WCHAR field[33]; // linked field name.

} UNITTEXT;

// image object information.

typedef struct

{

 int widthZoom; // horizontal zoom rate. 10000 multiplied value.

 int heightZoom; // vertical zoom rate. 10000 multiplied value.

 short contrast; // contrast value.

 short brightness; // brightness value.

 BOOL grayscale; // is grayscaled ?

 USHORT align; // image alignment on frame.

 POINT offset; // start position of draw.

 BYTE scaleMethod; // how to scale

 int round; // rounding value.

 WCHAR field[33]; // linked field name

} UNITIMAGE;

// barcode object information.

typedef struct

{

 int type; // barcode type index

 int size; // barcode size

 int option; // option

 SIZE opt2D; // 2D barcode option

 COLORREF barColor; // barcode color

 WCHAR field[33]; // linked field name

} UNITBAR;

113

// object unit information.

typedef struct

{

 int index; // zero-based index from list.

 int type; // object type. (UNITTYPE_TEXT, …)

 BYTE page; // page information.

 BYTE panel; // panel information.

 int left; // left position of frame.

 int top; // top position of frame.

 int width; // width of frame.

 int height; // height of frame.

 int rotate; // rotation value.

 Border border; // border information of frame.

 BackGround back; // background information of frame.

 union

 {

 UNITTEXT txt; // information of text unit.

 UNITIMAGE img; // information of image unit.

 UNITBAR bar; // information of barcode unit.

 };

} UNITINFO;

3.80 SmartComm_GetFieldLinkedUnitInfo

SmartComm_GetFieldLinkedUnitInfo is for getting the object’s data(text, barcode, image) from linked

fields.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_GetFieldLinkedUnitInfo(

HSMART hHandle,

WCHAR* szField,

UNITINFO* pUnit,

int dir

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

114

szField

[in] Field name.

pUnit

[out] A pointer of UNITINFO structure to get object’s data.

dir

[in] Sets the direction to get data. If it is UNITINFO_FIRST, it searches drawing an object from

the first part of list linked to the field. If it is UNITINFO_NEXT, it searches drawing an

object from the next part where the object was brought the last time.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.81 SmartComm_SetUnitInfo

SmartComm_SetUnitInfo is for updating object’s data(text, barcode, image).

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_SetUnitInfo(

HSMART hHandle,

UNITINFO* pUnit

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

pUnit

[in] Information of drawing object.

Return Values

115

SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.82 SmartComm_SetICG

SmartComm_SetICG command defines inter character gap/space of text.

It effects to SmartComm_DrawText, SmartComm_DrawText2 and CSD file.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_SetICG(

HSMART hHandle,

int page,

int nICG

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

Page

[in] page number which sets inter character gap/space.

nICG

[in] Inter character gap/space. The default value is “0”. When the value is negative, the gap will

be narrower. When the value is positive, the gap will be wider.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.83 SmartComm_GetICG

116

SmartComm_GetICG command is for bringing the inter character gap/space value in the current page.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_GetICG(

HSMART hHandle,

int page,

int* pnICG

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

Page

[in] Page number which sets the inter character gap/space.

pnICG

[out] Get the inter character gap/space value.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.84 SmartComm_IsBackEnable

SmartComm_IsBackEnable command will check that the back side is activated or not.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_IsBackEnable(

HSMART hHandle,

117

BOOL* pbEnabled

);

Parameters

 hHandle

[in] handle of the smart printer which is opened.

pbEnabled.

[out] Checks the back side whether it is activated or not.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.85 SmartCommEx_SerialCmdSend

SmartCommEx_SerialCmdSend is a function for sending commands through printer serial port.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_IsBackEnable(

HSMART hHandle,

Byte* pbtSend

int nSendLen

);

Parameters
 hHandle

[in] handle of the smart printer which is opened.

pbtSend

[in] the pointer of sending packets.

nSendLen

[in] the length of sending packets.

118

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
This function is only available when the serial port is connected inside of the printer.

After calling SmartCommEx_SerialCmdSend and then call SmartCommEx_SerialCmdRecv.

3.86 SmartCommEx_SerialCmdRecv

SmartCommEx_SerialCmdRecv is a function for receiving commands through printer serial port.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_IsBackEnable(

HSMART hHandle,

Byte* pbtRecv

int nRecvLen

);

Parameters
 hHandle

[in] handle of the smart printer which is opened.

pbtRecv

[in] the pointer of receiving buffer.

nSendLen

[in] the size of receiving buffer.

[out] the length of data is in receiving buffer.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
This function is only available when the serial port is connected inside of the printer.

119

3.87 SmartComm_RFPowerOn

SmartComm_RFPowerOn is to operate functions for the contactless smart card.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_RFPowerOn(

HSMART hHandle,

int nDev,

int* pnCardType,

DWORD* pdwOutLen,

BYTE* pOutBuf

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

nDev

[in] The number to distinguish the device (1: Internal, 2: External)

pnCardType

[in] not use.

pdwOutLen

[out] Length of contactless smart card’s ATR value.

pOutBuf

[out] The length of contactless smart card’s ATR value.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

120

3.88 SmartComm_RFPowerOff

SmartComm_RFPowerOff is for stopping the use of the contactless smart card.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_RFPowerOff(

HSMART hHandle,

int nDev

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

nDev

[in] The number to distinguish the device (1: Internal, 2: External)

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.89 SmartComm_RFInput

SmartComm_RFInput is PC/SC and is for sending APDU command to the contactless smart card.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_RFInput(

HSMART hHandle,

int nDev,

121

DWORD dwTXSize,

BYTE* lpbTxData,

DWORD* pdwRXSize,

BYTE* plbRxData

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

nDev

[in] The number to distinguish the device (1: Internal, 2: External)

dwInLen

[in] Size of APDU input buffer

pInBuf

[in] Input APDU buffer

pdwOutLen

[in/out] Size of output data.

pOutBuf

[out] Output buffer returned.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
SmartComm_RFInput function will not be supported in the future so please use

SmartComm_RFTransmit function instead of SmartComm_RFInput.

3.90 SmartComm_RFOutput

SmartComm_RFOutput is PC/SC and is for sending APDU command to the contactless smart card.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

122

Definition

int SmartComm_RFOutput(

HSMART hHandle,

int nDev,

DWORD dwInLen,

BYTE* pInBuf,

DWORD* pdwOutLen,

BYTE* pOutBuf

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

nDev

[in] The number to distinguish the device (1: Internal, 2: External)

dwInLen

[in] Input APDU buffer’ size

pInBuf

[in] Input APDU buffer

pdwOutLen

[in/out] Size of output buffer

pOutBuf

[out] Output buffer which is returned

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
SmartComm_RFOutput function will not be supported in the future so please use

SmartComm_RFTransmit function instead of SmartComm_RFOutput.

3.91 SmartComm_RFTransmit

123

SmartComm_RFTransmit is PC/SC and is sending APDU command to Contactless smart card.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_RFTransmit(

HSMART hHandle,

int nDev,

DWORD dwTXSize,

BYTE* lpbTXData,

DWORD* pdwRXSize,

BYTE* plbRXData

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

nDev

[in] The number to distinguish the device (1: Internal, 2: External)

dwTXSize

[in] APDU buffer’ size

lpbTXData

[in] APDU buffer

pdwRXSize

[in/out] Size of the output buffer

plbTXData

[out] Output buffer which is returned

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
SmartComm_RFInput and SmartComm_RFOutput function will not be supported in the future so

124

please use SmartComm_RFTransmit function.

3.92 SmartCommEx_RFPCSC_GetReaderName.

SmartCommEx_RFPCSC_GetReaderName command is to know the name of RF reader PC/SC which

is connected to the printer.

Operation Mode: USB, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartCommEx_RFPCSC_GetReaderName(

HSMART hHandle,

int nWhich,

WCHAR* szName

);

Parameters
hHandle

[in] handle of the smart printer which is opened.

nWhich

[in] Defines the device which is used (0: internal RF reader, 1: extender RF reader)

szName

[out] Buffer for bringing RF reader’s name.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.93 SmartComm_ICPowerOn

SmartComm_ICPowerOn is for operating the contactless smart card.

125

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_ICPowerOn(

HSMART hHandle,

int nDev,

DWORD* pdwOutLen,

BYTE* pOutBuf

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

nDev

[in] The number to distinguish devices (1: Internal, 2: External)

pdwOutLen

[out] The length of contactless smart card’s ATR.

pOutBuf

[out] Returns the contactless smart card’s ATR.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
In case of using the internal module, the card should be moved to IC position and proceed the

contacting between the card and reader by SmartComm_ICHContact and execute

SmartComm_ICPowerOn.

3.94 SmartComm_ICPowerOff

SmartComm_ICPowerOff is for stopping the use of the contactless smart card.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

126

Definition

int SmartComm_ICPowerOff(

HSMART hHandle,

int nDev

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

nDev

[in] Number to distinguish the device (1: Internal, 2: External)

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
If it uses the internal module, the card and reader should be separated using SmartComm_

ICHDiscontact, after using of SmartComm_ICPowerOff.

3.95 SmartComm_ICInput

SmartComm_ICInput is for sending APDU command set to the contactless smart card.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_ICInput(

HSMART hHandle,

int nDev,

DWORD dwInLen,

BYTE* pInBuf,

DWORD* pdwOutLen,

BYTE* pOutBuf

);

127

Parameters
hHandle

[in] A handle of SMART Printer opened.

nDev

[in] The number to distinguish devices (1: Internal, 2: External)

dwInLen

[in] Size of input buffer

pInBuf

[in] Input buffer

pdwOutLen

[in/out] Size of output buffer

pOutBuf

[out] Output buffer of data read.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
SmartComm_ICInput function will not be supported in the future so please use SmartComm_

ICTransmit function.

3.96 SmartComm_ICOutput

SmartComm_ICOutput is for sending APDU command set to the contactless smart card.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartComm_ICOutput(

HSMART hHandle,

int nDev,

DWORD dwInLen,

128

BYTE* pInBuf,

DWORD* pdwOutLen,

BYTE* pOutBuf

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

nDev

[in] The number to distinguish the device (1: Internal, 2: External)

dwInLen

[in] Input buffer’ size

pInBuf

[in] Input buffer

pdwOutLen

[in/out] Size of output buffer

pOutBuf

[out] Output buffer

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
SmartComm_ICOutput function will not be supported in the future so please use SmartComm_

ICTransmit function.

3.97 SmartComm_ICTransmit

SmartComm_ICTransmit is for sending APDU commands to Contact smart card.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

129

Definition
int SmartComm_ICTransmit(

HSMART hHandle,

int nDev,

DWORD dwInLen,

BYTE* pInBuf,

DWORD* pdwOutLen,

BYTE* pOutBuf

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

nDev

[in] The number to distinguish the device (1: Internal, 2: External)

dwInLen

[in] Input buffer’ size

pInBuf

[in] Input buffer

pdwOutLen

[in/out] Size of output buffer

pOutBuf

[out] Output buffer

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
SmartComm_ICInput and SmartComm_ICOutput function will not be supported in the future so

please use SmartComm_ICTransmit function.

3.98 SmartCommEx_IC_GetICReaderInfo

130

SmartCommEx_IC_GetICReaderInfo command is to know the name of PC/SC of IC reader.

Operation Mode: USB, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartCommEx_IC_GetICReaderInfo(

HSMART hHandle,

int* pnIdx,

WCHAR* szName

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

pnIdx

[in] Index of SMART Printer in DEVICEINFO.

szName

[out] Buffer for IC reader’s name.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.99 SmartCommEx_IC_ GetSIMReaderInfo

SmartCommEx_IC_GetSIMReaderInfo command is to know the name of SIM reader PC/SC.

Operation Mode: USB, Driver, DCL
Operation Device: SMART-50, 30

Definition

int SmartCommEx_IC_GetSIMReaderInfo(

HSMART hHandle,

int* pnIdx,

131

WCHAR* szName

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

pnIdx.

[in] Index of SMART Printer in DEVICEINFO.

szName

[out] Buffer for SIM reader’s name

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

3.100 SmartCommEx_SetPassword

SmartCommEx_SetPassword command is to set the password of the administrator in SMART Printer.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartCommEx_SetPassword(

HSMART hHandle,

WCHAR* szOldPW,

WCHAR* szNewPW

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

szOldPW

[in] Old password. New printer does not have the password. The password can be set as

132

maximum 8 digits.

szNewPW

[in] New password. The maximum is 8 digits.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
The return value of this function is to know whether the command is sent successfully. To know

whether the password is changed or not, check the printer status by SmartComm_GetStatus

commands. If the password is incorrect or generate Errors, SMSC_F_INCORRECT_PW code will be

turned “On” when SMART-50 or SMART-30 is connected, S51PS_F_INVALIDPASSWORD code will

be turned “On” when SMART-51 or SMART-31 is connected.

In the CardPrinterConfig, when Root Auth. is activated in Security and the printer is turned on, the

printer will be locked. To use the printer, you have to do certification process using SmarCommEx_

UnLockPrinter2.

3.101 SmartCommEx_SetUserPassword

SmartCommEx_SetUserPassword command is to set the user password.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartCommEx_SetUserPassword(

HSMART hHandle,

WCHAR* szRootPW,

WCHAR* szUserPW

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

szRootPW

[in] Administrator’s password which is set at the moment. New printer does not have the

133

password. You can input the password with maximum 8 digits.

szUserPW

[in] User’s password which will be set in the printer. You can input the password with maximum

8 digits.

Return Value
SM_SUCCESS is returned if the function is operated successfully.

Remarks
The return value of this function is to know whether the command is sent successfully. To know

whether the password is changed or not, check the printer status by SmartComm_GetStatus

commands. If the password is incorrect or generate Errors, SMSC_F_INCORRECT_PW code will be

turned “On” when SMART-50 or SMART-30 is connected, S51PS_F_INVALIDPASSWORD code will

be turned “On” when SMART-51 or SMART-31 is connected.

In the CardPrinterConfig, when Root Witness is activated in PC Authentification and the printer is

turned on, the printer will be locked. To use the printer, you have to do certification process using

SmarCommEx_UnLockPrinter2.

3.102 SmartCommEx_UnlockPrinter2

SmartCommEx_UnlockPrinter2 command is to unlock a printer when the printer is locked by Root

Witness (Root Auth.) or User Witness (User Auth.).

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartCommEx_UnlockPrinter2(

HSMART hHandle,

WCHAR* szPW

);

Parameters

hHandle

[in] A handle of SMART printer which is opened.

szPW

134

[in] Password of administrator or user which will be unlocked.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
The return value of this function is to know whether the command is sent successfully. To know

whether the password is changed or not, check the printer status by SmartComm_GetStatus

commands. If the password is incorrect or generate Errors, SMSC_F_INCORRECT_PW code will be

turned “On ” when SMART-50 or SMART-30 is connected, S51PS_F_INVALIDPASSWORD code will

be turned “On” when SMART-51 or SMART-31 is connected.

.

3.103 SmartCommEx_LockPrinter2

SmartCommEx_LockPrinter2 command is to lock a printer from unlocking status.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartCommEx_LockPrinter2(

HSMART hHandle,

WCHAR* szPW

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

szPW

[in] Password of administrator or user.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remark
The return value of this function is to know whether the command is sent successfully. To know

135

whether the password is changed or not, check the printer status by SmartComm_GetStatus

commands. If the password is incorrect or generate Errors, SMSC_F_INCORRECT_PW code will be

turned “On” when SMART-50 or SMART-30 is connected, S51PS_F_INVALIDPASSWORD code will

be turned “On” when SMART-51 or SMART-31 is connected.

3.104 SmartLami_GetStatus

SmartLami_GetStatus command is for getting laminator’s status.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51, 31

Definition

int SmartLami_GetStatus(

HSMART hHandle,

BYTE* pstatus

int* pnlen

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

pstatus

[in] the pointer of buffer for getting laminator status

SMART-50 Laminator Status Structure

offset size type description

0 8 __int64 Laminator status information

Please refer to below Remark section.

8 1 BYTE Film type.

9 2 char[2] reserved

11 1 BYTE A maximum number of laminating film.

Multiply this value by 10 for the actual number.

12 2 USHORT Remained number of films.

14 2 char[2] reserved

136

16 2 char[2] reserved

18 1 BYTE Laminator local code.

19 1 BYTE Laminator vendor code.

20 1 BYTE Film local code.

21 1 BYTE Film vendor code.

SMART-51 Laminator Status Structure

offset size type description

0 8 __int64 Laminator status information

Please refer to below Remark section.

8 1 BYTE Film type.

9 1 BYTE Film maker.

10 2 USHORT A maximum number of laminating film.

12 2 USHORT Remained number of films.

14 2 char[2] reserved

16 2 char[2] reserved

18 1 BYTE Laminator local code.

19 1 BYTE Laminator vendor code.

20 1 BYTE Film local code.

21 1 BYTE Film vendor code.

pnlen

[in] the size of pstatus buffer. Must give the size of pstatus buffer, unless it will give an error.

[out] the length of data written in pstatus buffer.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remark
This function is only available when laminator is equipped in case of the SMART-50 printer and

printer firmware is more than 1.00.60. This function is only available when laminator is equipped in

case of the SMART- 51 printer.

Below is the simple code for calling this function.
 __int64 flipStatus = 0;

 int len = sizeof(flipStatus);

 SmartLami_GetStatus(hsmart, (BYTE*)&flipStatus, &len);

SMART-50 Printer Laminator’s statuses are defined in SmartComm2.dll.h.

// MOTION-PART

137

#define LMSC_M_HEATHDRLIFTUP 0x0000000000000001 // Heat-header is being lifted up

#define LMSC_M_HEATHDRLIFTDOWN 0x0000000000000004 // Heat-header is being lifted down

#define LMSC_M_CARDIN 0x0000000000000010 // Card In

#define LMSC_M_MOVE_LAMINATE 0x0000000000000040 // Moving to laminate position

#define LMSC_M_FRONTCARDOUT 0x0000000000000100 // Card is being moved out to front.

 (Printer side)

#define LMSC_M_REARCARDOUT 0x0000000000000200 // Card is being moved out to rear.

 (stacker side)

#define LMSC_M_ROTATE 0x0000000000000400 // Rotating

#define LMSC_S_WAIT 0x0000000000000800 // Waiting

#define LMSC_S_CMDRUN 0x0000000000002000 // Command is being executed.

#define LMSC_M_HEATING 0x0000000000004000 // Heating Heat-header

#define LMSC_S_CASEOPEN 0x0000000000008000 // Top cover is opened

#define LMSC_M_LAMINATING 0x0000000000010000 // Laminating

#define LMSC_S_CARDINSENSOR 0x0000000020000000 // Caught by card in sensor

#define LMSC_S_CARDOUTSENSOR 0x0000000040000000 // Caught by card out sensor

#define LMSC_S_OUTDOORSENSOR 0x0000000080000000 // Caught by stacker open sensor

// ERROR-PART

#define LMSC_E_HEATHDRLIFTUP 0x0000000100000000 // Error while lifting up Heat-header

#define LMSC_E_HEATHDRLIFTDOWN 0x0000000400000000 // Error while lifting down Heat-header

#define LMSC_E_CARDIN 0x0000001000000000 // Error while moving card in

#define LMSC_E_MOVE_LAMINATE 0x0000004000000000 // Error while moving to Laminate position.

#define LMSC_E_FRONTCARDOUT 0x0000010000000000 // Error while front card out (printer side)

#define LMSC_E_REARCARDOUT 0x0000020000000000 // Error while rear card out (stacker side)

#define LMSC_E_ROTATE 0x0000040000000000 // Error while rotating

#define LMSC_E_INIT 0x0000800000000000 // Error while initializing laminator

#define LMSC_E_EMPTYFILM 0x0001000000000000 // Film remain count is 0.

#define LMSC_E_NOFILM 0x8000000000000000 // No film is installed, or cannot recognize

SMART-51 Printer Laminator’s statuses are defined in SmartComm2.dll.h.

// MOTION-PART

#define S51LS_S_READY 0x0000000000000001 // Ready

#define S51LS_S_BUSY 0x0000000000000002 // Command is being executed

#define S51LS_M_CARDMOVE 0x0000000000000004 // Card is being moved

#define S51LS_M_CARDIN 0x0000000000000008 // Card In

#define S51LS_M_CARDEJECT 0x0000000000000010 // Card Out

#define S51LS_M_THEADLIFT 0x0000000000000020 // Laminator head is being lifted up/down

#define S51LS_M_LAMINATE 0x0000000000000040 // Laminating

#define S51LS_M_FLIPTRAYMOVE 0x0000000000000080 // Card is being moved to flipper

#define S51LS_S_FLIPTRAYTOPSIDED 0x0000000000000100 // Flipper is up state

#define S51LS_M_HEATHEADHEAT 0x0000000000010000 // Heating laminator head

#define S51LS_M_FILMMOTOR 0x0000000000020000 // Film Motor is operating

#define S51LS_M_HEADMOTOR 0x0000000000040000 // Head Motor is operating

#define S51LS_M_CARDMOVESTEPMOTOR 0x0000000000080000 // Step Motor is operating

#define S51LS_M_FLIPSTEPMOTOR 0x0000000000100000 // Flip Motor is operating

#define S51LS_S_DETECTENCODERCNTINC 0x0000000000200000 // Sensing the encoder counter increased

#define S51LS_S_DETECTENCODERCNTDEC 0x0000000000400000 // Sensing the encoder counter decreased

#define S51LS_S_COVEROPENED 0x0000000000800000 // Case Open

138

#define S51LS_S_LOCKSENSOR 0x0000000001000000 // Locked

#define S51LS_S_CARDCENTERSENSOR 0x0000000002000000 // Caught by Card Center sensor

#define S51LS_S_CARDOUTSENSOR 0x0000000004000000 // Caught by Card Out sensor

#define S51LS_S_FLIPPERCENTERSENSOR 0x0000000008000000 // Caught by Flipper Center sensor

#define S51LS_S_FLIPPERFLIPSENSOR 0x0000000010000000 // Caught by Flipper flip sensor

#define S51LS_S_HEADSENSOR 0x0000000020000000 // Caught by Head up/down sensor

#define S51LS_S_FILMMARKMAINSENSOR 0x0000000040000000 // Caught by Flim mark main sensor

#define S51LS_S_FILMMARKSUBSENSOR 0x0000000080000000 // Caught by Flim mark sub sensor

// ERROR-PART

#define S51LS_F_CARDIN 0x0000000100000000 // Error while moving card in

#define S51LS_F_CARDMOVE 0x0000000200000000 // Error while moving card

#define S51LS_F_CARDEJECT 0x0000000400000000 // Error while ejecting card

#define S51LS_F_HEADLIFT 0x0000000800000000 // Error while head up/down

#define S51LS_F_LAMINATE 0x0000001000000000 // Error while laminating

#define S51LS_F_COMMAND 0x0000002000000000 // Error while executing command

#define S51LS_F_FLIPTRAYMOVE 0x0000004000000000 // Error while moving card in the flip tray

#define S51LS_E_INIT 0x0001000000000000 // Error while initialzing laminator

#define S51LS_E_FILMSEARCH 0x0002000000000000 // Error while searching a film position

#define S51LS_E_FILM0 0x0004000000000000 // Film remain count is 0

#define S51LS_E_NOFILM 0x0008000000000000 // No film is installed or can not recognize

#define S51LS_E_HEADOVERHEAT 0x0010000000000000 // Head is overheated or fault

3.105 SmartFlip_GetStatus

SmartFlip_GetStatus command is for getting flipper’s status.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-51, 31

Definition

int SmartFlip_GetStatus(

HSMART hHandle,

BYTE* pstatus

int* pnlen

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

pstatus

139

[in] the pointer of buffer for getting flipper status

SMART-51, 31 Flipper Status Structure

offset size type description

0 8 __int64 Flipper status information

Please refer to below Remark section.

pnlen

[in] the size of pstatus buffer. Must give the size of pstatus buffer, unless it will give an error.

[out] the length of data written in pstatus buffer.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remark
This function is only available when the flipper is equipped in case of the SMART- 51 and SMART-

51 printer. The installation of flipper can be checked by the return value of calling

SmartComm_GetStatus.

The SM_F_NOTSUPPORTYET is returned if the printer is SMART-50 and SMART-30.

Below is the simple code for calling this function.
 __int64 flipStatus = 0;

 int len = sizeof(flipStatus);

 SmartFlip_GetStatus(hsmart, (BYTE*)&flipStatus, &len);

SMART-51,31 Printer flipper’s statuses are defined in SmartComm2.dll.h.

// MOTION-PART

#define S51FS_S_READY 0x0000000000000001 // ready

#define S51FS_S_BUSY 0x0000000000000002 // busy (doing something)

#define S51FS_M_CARDMOVE 0x0000000000000004 // moving card

#define S51FS_M_CARDIN 0x0000000000000008 // inserting card

#define S51FS_M_CARDEJECT 0x0000000000000010 // ejecting card

#define S51FS_M_FLIP 0x0000000000000020 // flipping

#define S51FS_S_FLIPTRAYTOPSIDED 0x0000000000000100 // flip tray top sided

#define S51FS_S_ACTIVATEDREARSENSOR 0x0000000002000000 // activated rear sensor

#define S51FS_M_CARDMOVESTEPMOTOR 0x0000000004000000 // working card move step motor

#define S51FS_M_FLIPSTEPMOTOR 0x0000000008000000 // working flip step motor

#define S51FS_S_COVERCLOSED 0x0000000010000000 // cover is opened

#define S51FS_S_CENTERSENSOR 0x0000000020000000 // center sensor

#define S51FS_S_REARSENSOR 0x0000000040000000 // rear sensor

#define S51FS_S_FLIPSENSOR 0x0000000080000000 // flip sensor

// ERROR-PART

140

#define S51FS_F_CARDIN 0x0000000100000000 // failed to card insert

#define S51FS_F_CARDMOVE 0x0000000200000000 // failed to card move

#define S51FS_F_CARDEJECT 0x0000000400000000 // failed to card eject

#define S51FS_F_MOVEFLIPTRAY 0x0000000800000000 // failed to move flip tray

#define S51FS_F_COMMAND 0x0000001000000000 // failed while process command

#define S51FS_E_INIT 0x0001000000000000 // error from initializing

3.106 SmartLami_GetVersion

SmartLami_GetVersion command is for getting laminator’s version.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 51

Definition

int SmartLami_GetVersion(

HSMART hHandle,

WCHAR* szVer

int* pcblen

);

Parameters

hHandle

[in] A handle of SMART Printer opened.

szVer

[Out] A pointer of the Unicode buffer of Laminator version

pcblen

[in] the size of szVer.

[out] the length of character set in szVer buffer.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remark
This function is only available when laminator is equipped in case of the SMART-50 printer and

printer firmware is more than 1.00.60. This function is only available when laminator is equipped in

case of the SMART- 51 printer. To check laminator is installed, call SmartComm_GetStatus and check

141

that SMSC_S_EQUIPLAMINATOR is set.

3.107 SmartCommEx_GetConfig

SmartCommEx_GetConfig command is for getting the configuration of Smart SDK.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51,31

Definition
 int SmartCommEx_GetConfig(

HSMART hHandle,

int cfgId,

cfgval* pvalue

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

cfgId

[in] Configuration ID of SDK is set
#define SMEX_CFG_STATUS51TO50 0x0E // flag of Converted SMART-51 status code to SMART-50’s
#define SMEX_CFG_RESOLUTION 0x10 // Resolution of printing

SMEX_CFG_STATUS51TO50 uses SmartComm_GetStatus, SmartLami_GetStatus. You can check

whether the status code of SMART-51 printer and laminator is converted to SMART-50’s.

SMEX_CFG_RESOLUTION is the resolution value of printing.

pvalue

[out] the current configuration value of cfgId

If cfgid is SMEX_CFG_STATUS51TO50, the returned pvalue is as below.

#define SMEX_CFG_USE 0 // use the configuration ID function
#define SMEX_CFG_NOTUSE 1 // not use the configuration ID function

If pvalue is SMEX_CFG_USE, the status code for SMART-51 is converted to SMART-50’s.

If cfgid is SMEX_CFG_RESOLUTION, the returned pvalue is as below.

142

#define SMEX_CFG_RES300X300 0 // 300x300 dpi
#define SMEX_CFG_RES300X600 1 // 300x600 dpi
#define SMEX_CFG_RES300X1200 2 // 300x1200 dpi

Default value is SMEX_CFG_RES300X300.

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks

Even though SMEX_CFG_RES300X600 or SMEX_CFG_RES300X1200 is set, the resolution range

for X, Y position of objects is same. (1012x636 or 636x1012)

3.108 SmartCommEx_SetConfig

SmartCommEx_GetConfig command is for setting configuration of Smart SDK.

Operation Mode: USB, Network, Driver, DCL
Operation Device: SMART-50, 30, 51,31

Definition
 int SmartCommEx_SetConfig(

HSMART hHandle,

int cfgId,

cfgval value

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

cfgId

[in] Configuration ID of SDK is set
#define SMEX_CFG_STATUS51TO50 0x0E // flag of Converted SMART-51 status code to SMART-50’s
#define SMEX_CFG_RESOLUTION 0x10 // Resolution of printing

SMEX_CFG_STATUS51TO50 uses SmartComm_GetStatus, SmartLami_GetStatus. You can check

whether the status code of SMART-51 printer and laminator is converted to SMART-50’s.
SMEX_CFG_RESOLUTION is the resolution value of printing.

143

value

[in] the configuration value to set of cfgId

If cfgid is SMEX_CFG_STATUS51TO50, the returned pvalue is as below.

#define SMEX_CFG_USE 0 // use the configuration ID function
#define SMEX_CFG_NOTUSE 1 // not use the configuration ID function

If the value is SMEX_CFG_USE, the status code of SMART-51 and 31 is converted to SMART-50’s.

If the value is SMEX_CFG_NOTUSE, the returned status code is not coverted. It means that the status

code of SMART-50 is returned when the SMART-50 and 30 are connected, and the status code of

SMART-51 is returned when the SMART-51 and 31 is connected. So, the program should check

the connected printer before checking a status code when SMEX_CFG_NOTUSE is set.

If cfgid is SMEX_CFG_RESOLUTION, the returned value is as below.

#define SMEX_CFG_RES300X300 0 // 300x300 dpi
#define SMEX_CFG_RES300X600 1 // 300x600 dpi
#define SMEX_CFG_RES300X1200 2 // 300x1200 dpi

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remarks
Even though SMEX_CFG_RES300X600 or SMEX_CFG_RES300X1200 is set, the resolution range for

X, Y position of objects is same. (1012x636 or 636x1012)

3.109 SmartKiosk_Hopper

SmartKiosk_Hopper command is for retrieving the information of Multi hopper.

Operation Mode: USB, Driver, DCL
Operation Device: SMART-51, 31

Definition
 int SmartKiosk_Hopper(

HSMART hHandle,

int hopper,

int opt,

int* pvalue

144

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

hopper

[in] Hopper number to get information
#define KIOSK_HOPPER_AUTO 0 // Get a card automatically among hoppers
#define KIOSK_HOPPER_1 0x01 // No.1 Hopper
#define KIOSK_HOPPER_2 0x02 // No.2 Hopper
#define KIOSK_HOPPER_3 0x04 // No.3 Hopper
#define KIOSK_HOPPER_4 0x08 // No.4 Hopper
#define KIOSK_HOPPER_5 0x10 // No.5 Hopper
#define KIOSK_HOPPER_6 0x20 // No.6 Hopper

opt

[in] information type to get.
#define KIOSK_HOPPER_SCAN 0
#define KIOSK_HOPPER_STATUS 1

 Scans the hoppers if opt is KIOSK_HOPPER_SCAN. Scanned hopper information is returned to

pvalue by the bit-or operation. In this case, the value of hopper is ignored

Gets the information of hopper value if opt is KIOSK_HOPPER_STATUS. The status of the hopper

is as below.

#define KIOSK_HOPPER_READY 0 // Hopper is ready
#define KIOSK_HOPPER_ERROR 0x8000000F // Error in the hopper
#define KIOSK_HOPPER_EMPTY 0x8000000B // No card in the hopper
#define KIOSK_HOPPER_NOTEXIST 0x80000003 // That hopper doesn’t exist

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remark
 This function is only available when multi-hopper is equipped in the SMART-51, 31 printers.

3.110 SmartKiosk_CardIn2

SmartKiosk_CardIn2 is for inserting a card to inside of printer from multi-hopper.

Operation Mode: USB, Driver, DCL
Operation Device: SMART-51, 31

145

Definition
 int SmartKiosk_CardIn2(

HSMART hHandle,

int hopper,

int opt

);

Parameters
hHandle

[in] A handle of SMART Printer opened.

hopper

[in] Hopper number to insert a card
#define KIOSK_HOPPER_AUTO 0 // Get a card automatically among hoppers
#define KIOSK_HOPPER_1 0x01 // No.1 Hopper
#define KIOSK_HOPPER_2 0x02 // No.2 Hopper
#define KIOSK_HOPPER_3 0x04 // No.3 Hopper
#define KIOSK_HOPPER_4 0x08 // No.4 Hopper
#define KIOSK_HOPPER_5 0x10 // No.5 Hopper
#define KIOSK_HOPPER_6 0x20 // No.6 Hopper

opt

[in] Not use

Return Values
SM_SUCCESS is returned if the function is operated successfully.

Remark
 This function is only available when multi-hopper is equipped in the SMART-51, 31 printers. To

check multi-hopper is installed, call SmartKiosk_Hopper and check the status of the multi-hopper

before using this function

146

4 Migration from SDK 1 to SDK 2

SMART SDK2 is compatible with previous version SDK1 so that programmers can use the program

which is set to SDK1 without any modifications. However, it is recommended to change the program

according to SDK2 when a network printer is used or new functions are used.

Please refer the followings to set your program according to SDK2.

4.1 Integration of DLL files

In SDK 1, two DLL files (SmartCommon.dll and SmartCommCl.dll) are used for different

connections, local and network. However, these 2 DLL files have been integrated as SmartComm2.dll

in SDK2, so both local printer and network printer can be used through the DLL and it makes your

work easier and convenient.

4.2 Calling printer list

The structures for calling printer list are updated in SDK2.

The names of functions are still the same but the names of structures and contents inside are

modified.

SDK 1: typedef struct {

int nID;
WCHAR ID[32][16];

 } DEVICEINFO;

 DEVICEINFO list = {0, };

 int nres = SmartComm_GetDeviceList(&list);

SDK 2: typedef struct {
 WCHAR name[128]; // printer name
 WCHAR id[64]; // printer ID
 WCHAR dev[64]; // device connection
 WCHAR desc[256]; // description
 int pid; // USB product ID

} SMART_PRINTER_ITEM;

typedef struct {
 int n;
 SMART_PRINTER_ITEM item[32];

} SMART_PRINTER_LIST;

 SMART_PRINTER_LIST list;
 int nres = SmartComm_GetDeviceList2(&list);

147

4.3 To distinguish between local and network

There are 2 methods to distinguish printer connections as follows

SDK 2: // By SmartComm_GetDeviceList2 function.
 SMART_PRINTER_LIST list;
 int nres = SmartComm_GetDeviceList2(&list);
 if(wcsncmp(list.item[0].dev, L”USB”, 3) == 0) {
 // Local USB Printer
 } else {
 // Network Printer
 }

SDK 2: // By SmartComm_GetDeviceInfo2 function.

typedef struct {
 WCHAR port[64]; // usb port
 WCHAR link[256]; // symbolic link of usb port
 int is_bridge; // Network module bridge
} SMART_PRINTER_PORT_USB;

typedef struct {
 WCHAR ver[64]; // version of network protocol
 WCHAR ip[64]; // ip address
 int port; // tcp port
 int is_ssl; // ssl protocol
} SMART_PRINTER_PORT_NET;

typedef struct {
 WCHAR name[128]; // printer name
 WCHAR id[64]; // printer ID
 WCHAR dev[64]; // device connection
 int dev_type; // 1=USB, 2=NET
 int pid; // USB product ID

 SMART_PRINTER_PORT_USB usb;
 SMART_PRINTER_PORT_NET net;
} SMART_PRINTER_STANDARD;

typedef struct {
 int is_dual; // dual printer
 WCHAR ic1[64]; // internal contact encoder
 WCHAR ic2[64]; // external contact SIM encoder
 WCHAR rf1[64]; // internal contactless encoder
 WCHAR rf2[64]; // external contactless encoder
} SMART_PRINTER_OPTIONS;

typedef struct {
 SMART_PRINTER_STANDARD std;
 SMART_PRINTER_OPTIONS opt;
} SMART_PRINTER_INFO;

 SMART_PRINTER_LIST list;
 int nres = SmartComm_GetDeviceList2(&list);

148

 SMART_PRINTER_INFO info;
 nres = SmartComm_GetDeviceInfo2(&info, list.item[0].desc,
 SMART_OPENDEVICE_BYDESC);
 if(info.std.dev_type == 1) {
 // Local USB Printer
 } else {
 // Network Printer
 }

4.4 Connecting to the printer

In SDK1, only printer ID is used for connecting to the printer, however, both printer ID and Description

can be used for connecting to the printer, in SDK2.

SDK 1: DEVICEINFO list = {0, };
 SmartComm_GetDeviceList(&list);df

 HSMART hsmart = NULL;
 int nres = SM_SUCCESS;
 nres = SmartComm_OpenDevice(&hsmart, list.ID[0]);
 // or
 nres = SmartDCL_OpenDevice(&hsmart, list.ID[0], DMORIENT_LANDSCAPE);

SDK 2: SMART_PRINTER_LIST list;
 SmartComm_GetDeviceList2(&list);

 HSMART hsmart = NULL;
 int nres = SM_SUCCESS;
 nres = SmartComm_OpenDevice2(&hsmart, list.item[0].id, SMART_OPENDEVICE_BYID);
 // or
 nres = SmartComm_OpenDevice(&hsmart, list.item[0].desc,

SMART_OPENDEVICE_BYDESC);
 // or
 nres = SmartDCL_OpenDevice2(&hsmart, list.item[0].id,

SMART_OPENDEVICE_BYID, DMORIENT_LANDSCAPE);
 // or
 nres = SmartDCL_OpenDevice2(&hsmart, list.item[0].desc,

SMART_OPENDEVICE_BYDESC, DMORIENT_LANDSCAPE);

4.5 Sending APDU command to Contact/Contactless Smart Card

SmartComm_ICInput, SmartComm_ICOutput in SDK1, are the same function for sending APDU

command to Contact Smart Card Encoder.

These 2 functions have been updated as one single SmartComm_ICTransmit function in SDK2.

149

SmartComm_ICInput, SmartComm_ICOutput will not be supported in the future.

SmartComm_RFInput, SmartComm_RFOutput in SDK1, are the same function for sending APDU

command to Contactless Smart Card Encoder.

These 2 functions have been updated as one single SmartComm_RFTransmit function in SDK2.

SmartComm_RFInput, SmartComm_RFOutput will not be supported in the future.

SDK 1: BYTE btAPDU[] = { … };
 int nAPDULen = sizeof btAPDU;
 BYTE btRecv[512];
 int nRecvLen = sizeof btRecv;
 int nres = SmartComm_ICInput(hsmart, INTERNALDEV,

nAPDULen, btAPDU, RecvLen, btRecv);

SDK 2: BYTE btAPDU[] = { … };
 int nAPDULen = sizeof btAPDU;
 BYTE btRecv[512];
 int nRecvLen = sizeof btRecv;
 int nres = SmartComm_ICTransmit(hsmart, INTERNALDEV,

nAPDULen, btAPDU, RecvLen, btRecv);

4.6 The attentive point when use DCL mode.

When you use DCL mode and SmartComm_GetSurface please check the below.

There’s a difference of SMART_SURFACE structure between SDK 1 and SDK 2.

SMART_SURFACE_PROPERTIES structure in SMART_SURFACE is

SDK 1:
typedef struct {

 DWORD side;

 DWORD orientation;

 DWORD width;

 DWORD height;

} SMART_SURFACE_PROPERTIES;

SDK 2:
typedef struct {

 DWORD side;

 DWORD orientation;

 DWORD ribbon;

 DWORD ribbon_type;

 DWORD width;

 DWORD height;

} SMART_SURFACE_PROPERTIES;

150

In SDK 2, DWORD ribbon and DWORD ribbon_type members are newly included in SMART_SURFACE_

PROPERTIES.

Therefore, please change the structure of SMART_SURFACE_PROPERTIES first, before changing from

SDK 1 to SDK 2.

151

5 Migration from SMART-50 to SMART-51

The next model of SMART-50 and 30 is SMART-51 and 31. They basically operate similarly to SMART-

50 and 30 but some parts are changed. So, please refer to the followings to use the customized program by

SDK for SMART-50 and 30 with the SMART-51 and 31.

5.1 Conversion of status codes for printer

The status code of SMART-50, 30 is different from SMART-51,31’s. So, if the SMART-51, 31 is

connected without modification, it doesn’t work because the wrong status code is returned. To solve it,

there are two ways to convert the status code for SMART-51,31 to SMART-50’s.

5.1.1 Use the configuration file (SmartComm2.ini)

The SmartComm2.dll uses the configuration value in the SmartComm2.ini when it is loaded.

Make a SmartComm2.ini and insert the below strings to convert a status code automatically.
[DLL]

TranslateStatus=50

* Smartcomm2.dll tries to search Smartcomm2.ini in the same directory.

 If it can’t, it searches in the ‘C:\’.

5.1.2 Use the DLL function

Use the SmartCommEx_SetConfig to convert the status codes for SMART-51,31 to SMART-50,30’s.
HSMART hsmart;

…

SmartCommEx_SetConfig(hsmart, SMEX_CFG_STATUS51TO50, SMEX_CFG_USE);

5.2 Conversion of configuration structure for a printer

The configuration for SMART-50, 30 is in the SMART_DEVMODE (SHASM_DEVMODE) structure.

On the other hand, the configuration for SMART-51, 31 is in the SMART-51_DEVMODE structure and

two structures are different. But, even if the SMART_DEVMODE is used with SMART-51,31, it can

work without modification.

But for setting a parameter in SMART51_DEVMODE, please modify to use SMART51_DEVMODE

152

when the SMART-51, 31 is connected. Please use SmartComm_GetPrinterSettings2, SmartComm_

SetPrinterSettings2 for using SMART51_DEVMODE.

5.3 Modification of SURFACE structure

For drawing directly on the DC for the panel on DCL mode, please get and use the pointer of the

SMART_SURFACE structure with SMART-50,30 or SMART51_SURFACE structure with SMART-51,

31. Please use SmartDCL_GetSurface2 for using both structures.

SMART_SURFACE * pSurfFront = NULL;

SMART_SURFACE * pSurfBack = NULL;

int surflen = sizeof(SMART_SURFACE);

SmartDCL_GetSurface2(hsmart, PAGE_FRONT, (void**) &pSurfFront, &surflen);

SmartDCL_GetSurface2(hsmart, PAGE_BACK, (void**) &pSurfBack, &surflen);

if(pSurfFront)

FillRect(pSurfFront->bmp.hdcColor, …);

SMART51_SURFACE * pSurf51Front = NULL;

SMART51_SURFACE * pSurf51Back = NULL;

int surf51len = sizeof(SMART51_SURFACE);

SmartDCL_GetSurface2(hsmart, PAGE_FRONT, (void**) &pSur51fFront, &surflen);

SmartDCL_GetSurface2(hsmart, PAGE_BACK, (void**) &pSurf51Back, &surflen);

if(pSurf51Front)

FillRect(pSurf51Front->bmp.hdcColor, …);

153

6 Sample Code

In “SMART Printer SDK”, sample program and source codes are included for developers to use SDK.

The sample program is composed of simple functions so you can follow to use each function and program

easily.

6.1 VC++ Source: SmartCommonTest

SmartCommonTest in “SMART Printer SDK” is an example of SMART Printer using

SmartComm2.dll. SmartCommonTest is developed in VC of Microsoft Visual Studio 2005.

If executes SmartCommonTest, the window such as figure 5 will be displayed. Printer descriptions

are displayed on “Printer” list and you can choose a printer which will be used. After choosing a printer,

you can test SMART Printer with this program.

Figure 5 SmartCommonTest

Figure 6 Edit Field Value

“Use SBS(Step-By-Step) Mode, When Print” checkbox decides whether you will use SBS mode or

not. If you check the box, SBS mode will be set and it is applied during the printing process.

154

There are three buttons for each operating mode (Driver, DCL).

There are 3 ways to print in Driver mode.

“CSD File Print” is for printing CSD file which is made by SmartID. It is executed on

OnBnClickedButtonDriverCsd () of SmartCommonTestDlg.cpp file.

“Function Drawing Print” is for printing the image and text using SmartComm_DrawXXX functions. It

is executed on OnBnClickedButtonDriverFunction of SmartCommonTestDlg.cpp.

“Direct Drawing Print” is for printing image and text by drawing directly. It is executed on

OnBnClickedButtonDriverDirect() of SmartCommonTestDlg.cpp.

There are 3 ways to print in DCL mode.

“CSD File Print” is for printing CSD file which is made by SmartID. It is executed on

OnBnClickedButtonDclCsd () of SmartCommonTestDlg.cpp file.

“Function Drawing Print” is for printing the image and text using SmartComm_DrawXXX functions. It

is executed on OnBnClickedButtonDclFunction of SmartCommonTestDlg.cpp.

“Direct Drawing Print” is for printing image and text by drawing directly. It is executed on

OnBnClickedButtonDclDirect() of SmartCommonTestDlg.cpp.

There are buttons to test option devices at the bottom.

“Magnetic Write and Read” is for testing the read/write of the magnetic stripe. This is executed on

OnBnClickedButtonMagnetic () of SmartCommonTestDlg.cpp.

“Contact Smart Card (Get ATR)” is for reading ATR value from the smart card by internal contact

smart card encoder. This is executed on OnBnClickedButtonIc () of SmartCommonTestDlg.cpp.

“Contactless Smart Card – Mifare Write and Read using PC/SC” write and read in Mifare card using

an internal contactless smart card reader. This is executed on OnBnClickedButtonRf () of

SmartCommonTestDlg.cpp.

And CSD Document group is for loading CSD files and shows printing images.

If you click “Open CSD Document” button, it reads the CSD file using SDK function. The contents

read are displayed at the bottom of the main window, and if the CSD file contains fields, the fields are

listed in the list control. Figure 6 is appeared by double click on the list. When you insert the value on

that window, the value is automatically applied and updated contents are displayed at the bottom of

the main window.

“Close CSD Document” button closes the CSD file which is read by ‘Open CSD Document”

If you see the source code of SmartCommonTest, there are various examples for issuing cards

such as printing and encoding so it will be helpful to understand “SMART Printer SDK”.

As the examples, “SMART Printer SDK” provides the same interface for local issuance and network

155

issuance. So if you develop the issuance program, the network issuance can be possible without

additional development.

6.2 VB Source : SmartDLL.VB

In the “SMART Printer SDK”, SmartDLL.VB is using SMART Printer by SmartComm2.dl.

SmartDLL.VB is based on Microsoft Visual Studio 6.0.

If executes SmartDLL.VB, the window such as figure 7 will be displayed. Printer descriptions are

displayed on “Printer” list and you can choose a printer which will be used. After choosing a printer,

you can test SMART Printer with this program.

Figure 7 SmartDLL.VB

“Use SBS(Step-By-Step) Mode, When Print” checkbox decides whether you will use SBS mode or

not. If you check the box, SBS mode will be set and it is applied during the printing process.

There are three buttons for 2 operating modes (Driver, DCL).

There are 3 ways to print in Driver mode.

“CSD File Print” is for printing CSD file which is made by SmartID.

“Function Drawing Print” is for printing the image and text using SmartComm_DrawXXX functions.

156

There are 3 ways to print in DCL mode.

“CSD File Print” is for printing CSD file which is made by SmartID.

“Function Drawing Print” is for printing the image and text using SmartComm_DrawXXX functions.

There are buttons to test option devices at the bottom.

“Magnetic Encode & Decode” button will open a device and record magnetic data to a card and

compare magnetic data and memorized data and take the card out.

“Contactless Smart – Mifare Encode & Decode” button will open a device and record data to Mifare

card by PC/SC protocol and take the card out.

“Contact Smart – Get ATR” button will open the device and display the IC card ATR value and take

the card out.

And CSD Document group is for loading CSD files and shows printing images.

If you click “Open Document” button, it reads the CSD file using SDK function. The contents read

are displayed at the bottom of the main window such as figure 8, and if the CSD file contains fields,

the fields are listed in the list control. Figure 9 is appeared by double click on the list. When you insert

the value on that window, the value is automatically applied and updated contents are displayed at the

bottom of the main window.

“Close Documents” button closes the CSD file which is read by “Open Document”

If you see the source code of SmartDll VB Sample, there are various examples for issuing cards

such as printing and encoding so it will be helpful to understand “SMART Printer SDK”.

 Figure 8 Open Document

157

As the examples, “SMART Printer SDK” provides the same interface for local issuance and network

issuance. So if you develop the issuance program, the network issuance can be possible without

additional development.

Figure 9 Input Field value

6.3 VB.NET Source : vb.NET Sample

vb.NET Sample in “SMART Printer SDK” is for operating SMART Printer using SmartComm2.dll.

vb.NET Sample is developed in Microsoft Visual Studio 2005 VB Dot NET. Please be sure that you

should use 32-bit platform because SmartComm2.dll is developed as a 32bit platform.

Entire sample is similar to VC++ sample program.

If you start the program, a window will be displayed as figure 10 and SMART Printer will be

displayed in combo box at the top.

Figure 10 vb.Net Sample

158

After choosing a printer from the list, you can click buttons below and check that the functions work

well.

“Use SBS(Step-By-Step) Mode, When Print” is for using SBS(Step-By-Step) mode during the

printing process. If you click this checkbox, SBS mode is applied

There are two buttons for each operating mode (Driver, DCL).

There are two ways to print in Driver mode.

“CSD File Print” is for printing CSD file which is made by SmartID. It is executed on

btnDriverPrintCSD_Click() of Form1.vb file.

“Function Drawing Print” is for printing the image and text using SmartComm_DrawXXX functions. It

is executed on btnDriverPrintDrawFunc_Click() of Form1.vb file.

There are two ways to print in DCL mode.

“CSD File Print” is for printing CSD file which is made by SmartID. It is executed on

btnDCLPrintCSD_Click() of Form1.vb file.

“Function Drawing Print” is for printing the image and text using SmartComm_DrawXXX functions. It

is executed on btnDCLPrintDrawFunc_Click() of Form1.vb file.

There are buttons to test option devices at the bottom.

“Magnetic Encoding” is for testing the read/write of the magnetic stripe. This is executed on

btnMagneticEncoding_Click() of Form1.vb file.

“Contactless Smart Card (Mifare) Encoding” write and read in Mifare card using an internal

contactless smart card reader. This is executed on btnContactlessEncoding_Click() of Form1.vb file.

 “Contact Smart Card Encoding (Get ATR)” is for reading ATR value from the smart card by internal

contact smart card encoder. This is executed on btnContactEncoding_Click() of Form1.vb file.

And CSD Document group is for loading CSD files and shows printing images.

If you click “Open CSD Document” button, it reads the CSD file using SDK function. The contents

read are displayed at the bottom of the main window, and if the CSD file contains fields, the fields are

listed in the list control. Figure 11 is appeared by double-clicking on the list. When you insert the value

on that window, the value is automatically applied and updated contents are displayed at the bottom of

the main window.

159

Figure 11 Edit Field Value

“Close CSD Document” button closes the CSD file which is read by “Open CSD Document”

If you see the source code of vb.NET, there are various examples for issuing cards such as printing

and encoding so it will be helpful to understand “SMART Printer SDK”.

As the examples, “SMART Printer SDK” provides the same interface for local issuance and network

issuance. So if you develop the issuance program, the network issuance can be possible without

additional development.

6.4 Java Source : SmartJavaClass

SmartJavaClass.jar Sample in “SMART Printer SDK” is for operating SMART Printer using

SmartComm2.dll and SmartCommJNI.dll. SmartCommJNI.dll calls function those are included in

SmartComm2.dll and enables the users can use the functions in Java program. This DLL is developed

in Microsoft Visual Studio 2005 VC++. SmartJavaClass.jar Java sample is developed in NetBeans.

Figure 12 SmartJavaClass.jar

160

If you start SmartJavaClass.jar, a window will be displayed as figure 12 and SMART Printer will be

displayed in combo box at the top. You can choose a printer from the list and test with the buttons

below.

There are two buttons for each operating mode (Driver, DCL).

There are two ways to print in Driver mode.

“CSD File Print” is for printing CSD file which is made by SmartID. It is executed on

jButtonCSDFilePrintActionPerformed() of SmartCommonTest.java file.

“Function Drawing Print” is for printing the image and text using SmartComm_DrawXXX functions. It

is executed on jButtonFunctionDrawingPrintActionPerformed () of SmartCommonTest.java file.

There are two ways to print in DCL mode.

“CSD File Print” is for printing CSD file which is made by SmartID. It is executed on

jButtonDCLCsdFilePrintActionPerformed () of SmartCommonTest.java file.

“Function Drawing Print” is for printing the image and text using SmartComm_DrawXXX functions. It

is executed on jButtonDCLFunctionDrawingPrintActionPerformed () of SmartCommonTest.java file.

There are buttons to test option devices at the bottom.

“Magnetic Function Test” is for testing the read/write of the magnetic stripe. This is executed on

jButtonMagneticWriteAndReadActionPerformed () of SmartCommonTest.java file.

“Contact Smart Card Test (ATR Only)” is for reading ATR value from the smart card by internal

contact smart card encoder. This is executed on jButtonContactSmartCardTestActionPerformed () of

SmartCommonTest.java file.

“Mifare Contactless Smart Card Test” writes and reads in Mifare card using an internal contactless

smart card reader. This is executed on jButtonContaclessSmartCardTestActionPerformed () of

SmartCommonTest.java file.

If you see the source code of SmartJavaTest.java, there are various examples for issuing cards

such as printing and encoding so it will be helpful to understand “SMART Printer SDK”.

